cell functionality
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 67)

H-INDEX

24
(FIVE YEARS 6)

2021 ◽  
Vol 12 ◽  
Author(s):  
Guillaume Richer ◽  
Robin M. Hobbs ◽  
Katherine L. Loveland ◽  
Ellen Goossens ◽  
Yoni Baert

Short-term germ cell survival and central tissue degeneration limit organoid cultures. Here, testicular organoids (TOs) were generated from two different mouse strains in 3D printed one-layer scaffolds (1LS) at the air-medium interface displaying tubule-like structures and Leydig cell functionality supporting long-term survival and differentiation of germ cells to the meiotic phase. Chimeric TOs, consisting of a mixture of primary testicular cells and EGFP+ germline stem (GS) cells, were cultured in two-layer scaffolds (2LSs) for better entrapment. They showed an improved spheroidal morphology consisting of one intact tubule-like structure and surrounding interstitium, representing the functional unit of a testis. However, GS cells did not survive long-term culture. Consequently, further optimization of the culture medium is required to enhance the maintenance and differentiation of germ cells. The opportunities TOs offer to manipulate somatic and germ cells are essential for the study of male infertility and the search for potential therapies.


2021 ◽  
Author(s):  
Cecilia Trivellin ◽  
Lisbeth Olsson ◽  
Peter Rugbjerg

Stable cell performance in a fluctuating environment is essential for sustainable bioproduction and synthetic cell functionality; however, microbial robustness is rarely quantified. Here, we describe a high-throughput strategy for quantifying robustness of multiple cellular functions and strains in a perturbation space. We evaluated quantifications theory on experimental data and concluded that the mean-normalized Fano factor allowed accurate, reliable, and standardized quantification. Our methodology applied to perturbations related to lignocellulosic bioethanol production showed that Saccharomyces cerevisiae Ethanol Red exhibited both higher and more robust growth rates than CEN.PK and PE-2, while a more robust product yield traded off for lower mean levels. The methodology validated that robustness is function-specific and characterized by positive and negative function-specific trade-offs. Systematic quantification of robustness to end-use perturbations will be important to analyze and construct robust strains with more predictable functions.


2021 ◽  
Author(s):  
Tiago Lubiana ◽  
Helder Nakaya

Here, we present the fcoex package, which infers coexpression from scRNA-seq data and yields multiple, overlapping classes of cells based on coexpression modules. The tool extends the current scRNA-seq toolbox, providing a multi-hierarchy view on cell functionality and enabling the development of more complete cell atlases. Single-cell RNA sequencing (scRNA-seq) captures details of the cellular landscape, basing a fine-grained view on biological processes. Current pipelines, however, are restricted to single-label perspectives, missing details of the classification landscape. In the pbmc3k blood cell dataset, fcoex detects known classes, like antigen-presenting cells and a new theoretical group of cells, marked by the expression of FCGR3A (CD16). Fcoex extends the current scRNA-seq toolbox, providing a multi-hierarchy view on cell functions as a tool to develop complete cell type atlases.


Author(s):  
Muhammad Shafiq ◽  
Onaza Ali ◽  
Seong-Beom Han ◽  
Dong-Hwee Kim

Stem cells have been extensively used in regenerative medicine and tissue engineering; however, they often lose their functionality because of the inflammatory microenvironment. This leads to their poor survival, retention, and engraftment at transplantation sites. Considering the rapid loss of transplanted cells due to poor cell-cell and cell-extracellular matrix (ECM) interactions during transplantation, it has been reasoned that stem cells mainly mediate reparative responses via paracrine mechanisms, including the secretion of extracellular vesicles (EVs). Ameliorating poor cell-cell and cell-ECM interactions may obviate the limitations associated with the poor retention and engraftment of transplanted cells and enable them to mediate tissue repair through the sustained and localized presentation of secreted bioactive cues. Biomaterial-mediated strategies may be leveraged to confer stem cells enhanced immunomodulatory properties, as well as better engraftment and retention at the target site. In these approaches, biomaterials have been exploited to spatiotemporally present bioactive cues to stem cell-laden platforms (e.g., aggregates, microtissues, and tissue-engineered constructs). An array of biomaterials, such as nanoparticles, hydrogels, and scaffolds, has been exploited to facilitate stem cells function at the target site. Additionally, biomaterials can be harnessed to suppress the inflammatory microenvironment to induce enhanced tissue repair. In this review, we summarize biomaterial-based platforms that impact stem cell function for better tissue repair that may have broader implications for the treatment of various diseases as well as tissue regeneration.


2021 ◽  
Vol 22 (23) ◽  
pp. 12919
Author(s):  
Franziska Brauneck ◽  
Elisa Seubert ◽  
Jasmin Wellbrock ◽  
Julian Schulze zur Wiesch ◽  
Yinghui Duan ◽  
...  

This study aimed to characterize different natural killer (NK) cell phenotypes on bone marrow and peripheral blood cells from acute myeloid leukemia (AML) patients and healthy donors (HDs). Our data show that CD56dimCD16− and CD56brightCD16− NK cells represent the predominant NK cell subpopulations in AML, while the CD56dimCD16+ NK cells are significantly reduced compared to HDs. Moreover, TIGIT+ and PVRIG+ cells cluster on the CD56dimCD16+ subset whereas CD39+ and CD38+ cells do so on CD56brightCD16− NK cells in AML. Furthermore, functional effects of (co-)blockade of TIGIT and CD39 or A2AR on NK cell functionality were analyzed. These experiments revealed that the single blockade of the TIGIT receptor results in an increased NK-92 cell-mediated killing of AML cells in vitro. Combined targeting of CD39 or A2AR significantly augments the anti-TIGIT-mediated lysis of AML cells. Our data indicate that distinct NK cell subsets in AML exhibit different immunosuppressive patterns (via the TIGIT/PVRIG receptors and the purinergic pathway). In summary, we conclude that TIGIT, CD39, and A2AR constitute relevant inhibitory checkpoints of NK cells in AML patients. A combinatorial blockade synergistically strengthens NK-92 cell-mediated cytotoxicity. As inhibitors of TIGIT, CD39, and A2AR are clinically available, studies on their combined use could be conducted in the near future.


2021 ◽  
Author(s):  
Pablo Garcia-Valtanen ◽  
Christopher Martin Hope ◽  
Makutiro Ghislain Masavuli ◽  
Arthur Eng Lip Yeow ◽  
Harikrishnan Balachandran ◽  
...  

Background The duration and magnitude of SARS-CoV-2 immunity after infection, especially with regard to the emergence of new variants of concern (VoC), remains unclear. Here, immune memory to primary infection and immunity to VoC was assessed in mild-COVID-19 convalescents one year after infection and in the absence of viral re-exposure or COVID-19 vaccination. Methods Serum and PBMC were collected from mild-COVID-19 convalescents at ~6 and 12 months after a COVID-19 positive PCR (n=43) and from healthy SARS-CoV-2-seronegative controls (n=15-40). Serum titers of RBD and Spike-specific Ig were quantified by ELISA. Virus neutralisation was assessed against homologous, pseudotyped virus and homologous and VoC live viruses. Frequencies of Spike and RBD-specific memory B cells were quantified by flow cytometry. Magnitude of memory T cell responses was quantified and phenotyped by activation-induced marker assay, while T cell functionality was assessed by intracellular cytokine staining using peptides specific to homologous Spike virus antigen and four VoC Spike antigens. Findings At 12 months after mild-COVID-19, >90% of convalescents remained seropositive for RBD-IgG and 88.9% had circulating RBD-specific memory B cells. Despite this, only 51.2% convalescents had serum neutralising activity against homologous live-SARS-CoV-2 virus, which decreased to 44.2% when tested against live B.1.1.7, 4.6% against B.1.351, 11.6% against P.1 and 16.2%, against B.1.617.2 VoC. Spike and non-Spike-specific T cells were detected in >50% of convalescents with frequency values higher for Spike antigen (95% CI, 0.29-0.68% in CD4+ and 0.11-0.35% in CD8+ T cells), compared to non-Spike antigens. Despite the high prevalence and maintenance of Spike-specific T cells in Spike 'high-responder' convalescents at 12 months, T cell functionality, measured by cytokine expression after stimulation with Spike epitopes corresponding to VoC was severely affected. Interpretations SARS-CoV-2 immunity is retained in a significant proportion of mild COVID-19 convalescents 12 months post-infection in the absence of re-exposure to the virus. Despite this, changes in the amino acid sequence of the Spike antigen that are present in current VoC result in virus evasion of neutralising antibodies, as well as evasion of functional T cell responses.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1705-1705
Author(s):  
Asen Bagashev ◽  
Joseph Patrick Loftus ◽  
Savannah Ross ◽  
Lisa M Niswander ◽  
Haiying Qin ◽  
...  

Abstract Introduction : Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is associated with high rates of chemoresistance and relapse. CRLF2 (cytokine receptor-like factor 2) rearrangements occur in 50% of Ph-like and 60% of Down Syndrome (DS)-associated ALL and induce constitutive JAK/STAT and other kinase signaling. Current clinical trials are studying chemotherapy with the JAK inhibitor ruxolitinib in patients with CRLF2-rearranged Ph-like ALL, but results are not yet known. While chimeric antigen receptor T-cell (CART) immunotherapies have induced remarkable remissions in children with relapsed/refractory B-ALL, approximately 50% of CD19CART-treated patients will relapse again, many with CD19 antigen loss. New therapies are needed to prevent relapse and overcome immunotherapeutic resistance. Methods : We previously developed CAR T cells targeting the thymic stromal lymphopoietin receptor (TSLPR; encoded by CRLF2) and demonstrated potent preclinical activity in Ph-like ALL models (Qin Blood 2015), which has led to a soon-to-open phase 1 clinical trial for patients with relapsed/refractory CRLF2-overexpressing ALL. In the current preclinical studies, we hypothesized that combinatorial targeting with bispecific TSLPRxCD19CART or TSLPRxCD22CART (Ross Cancer Res 2020) or with TSLPRCART + ruxolitinib will have superior activity against CRLF2-rearranged Ph-like and DS-ALL. Results : TSLPRCART treatment of CRLF2-rearranged ALL cell line (n=1) and patient-derived xenograft (PDX) models potently inhibited leukemia proliferation in vitro and in vivo and induced long-term 'cure' of xenograft mice. However, co-administration of TSLPRCART + ruxolitinib markedly diminished in vivo T cell numbers, blunted cytokine production, and facilitated leukemia relapse, which could be abrogated by delaying ruxolitinib. Importantly, ruxolitinib co-treatment prevented severe TSLPRCART-induced cytokine release syndrome (CRS) and animal death. Interestingly, ruxolitinib withdrawal led to return of T-cell functionality with re-detection of TSLPRCART in peripheral blood, induction of IFN-γ production, and leukemia clearance upon CRLF2+ ALL rechallenge (Figure 1). Conclusions: In these preclinical studies, we report potent activity of TSLPRCART in cell line (n=1) and PDX models of childhood CRLF2-rearranged Ph-like ALL (n=2) and DS-ALL (n=2) and, interestingly, deleterious effects of concomitant JAK inhibition upon CAR T cell functionality. We demonstrated that ruxolitinib co-administration impaired in vivo TSLPRCART-induced ALL cell killing but was also beneficial in protection against life-threatening cytokine release syndrome in co-treated animals. Importantly, TSLPRCART was not eliminated, only suppressed, by JAKi co-treatment with restoration of T cell functionality upon ruxolitinib removal and/or leukemia relapse/rechallenge studies. Ongoing studies are defining optimal TSLPRCART + ruxolitinib sequence(s) to maximize both anti-leukemia efficacy and potential CRS mitigation, as well as assessing in vivo efficacy of bispecific TSLPRCARTs in CRLF2-R Ph-like ALL and DS-ALL PDX models for future translation and clinical evaluation in next-generation trials. Figure 1 Figure 1. Disclosures Fry: ElevateBio: Research Funding; Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Tasian: Aleta Biotherapeutics: Consultancy; Kura Oncology: Consultancy; Gilead Sciences: Research Funding; Incyte Corporation: Research Funding.


2021 ◽  
Author(s):  
Rashi Sehgal ◽  
Rakhi Maiwall ◽  
Vijayraghavan Rajan ◽  
Mojahidul Islam ◽  
Sukriti Baweja ◽  
...  

Abstract Background Decompensated cirrhosis patients are more prone to bacterial infections. Myeloid derived suppressor cells (MDSCs) expand in sepsis patients and disrupt immune cell functions. GM-CSF therapy helps in restoring immune cell functions and resolve infections. Its role in MDSCs modulation in cirrhotic with sepsis is not well understood. Methods 164 decompensated cirrhotic; 62 without(w/o), 72 with sepsis and 30 with sepsis treated with GM-CSF and 15 healthy were studied. High-dimensional flow cytometry was performed to analyse MDSCs, monocytes, neutrophils, CD4 T-cells and Tregs at admission, day3 and 7. Ex-vivo co-cultured MDSCs with T-cells were assessed for proliferation and apoptosis of T-cells, differentiation to T-regs. Plasma factors and mRNA levels were analysed by cytokine-bead assay and qRT-PCR. Results Frequency of MDSCs and T-regs were significantly increased (p=0.011, and p=0.02) with decreased CD4 T-cells(p=0.01) in sepsis than without sepsis and HC (p=0.000, p=0.07 and p=0.01) at day0, and day7. In sepsis patients, MDSCs had increased IL-10, Arg1 and iNOS mRNA levels (p=0.016, p=0.049 and p=0.06). Ex-vivo co-cultured MDSCs with T-cells drove T-cell apoptosis (p=0.03, p=0.03) with decreased T-cell proliferation and enhanced FOXP3+ expression (p=0.05 and p=0.05) in sepsis compared to no sepsis at day0. Moreover, blocking the MDSCs with inhibitors suppressed FOXP3 expression. GM-CSF treatment in sepsis patients significantly decreased MDSCs and FOXP3+Tregs but increased CD4 T-cell functionality and improved survival. Conclusion MDSCs have immunosuppressive function by expanding FOXP3+ Tregs and inhibiting CD4+ T-cell proliferation in sepsis. GM-CSF treatment suppressed MDSCs, improved T-cell functionality and reduced Tregs in circulation.


Author(s):  
Siew-Wai Fong ◽  
Nicholas Kim-Wah Yeo ◽  
Yi-Hao Chan ◽  
Yun Shan Goh ◽  
Siti Naqiah Amrun ◽  
...  

Abstract The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that have become dominant as the pandemic progresses bear the ORF8 mutation together with multiple spike mutations. A 382-nucleotide deletion (Δ382) in the ORF7b and ORF8 regions has been associated with milder disease phenotype and less systemic inflammation in COVID-19 patients. However, its impact on host immunity against SARS-CoV-2 remains undefined. Here, RNA-sequencing was performed to elucidate whole blood transcriptomic profiles and identify contrasting immune signatures between patients infected with either wildtype or Δ382 SARS-CoV-2 variant. Interestingly, the immune landscape of Δ382 SARS-CoV-2 infected patients featured an increased adaptive immune response, evidenced by enrichment of genes related to T cell functionality, a more robust SARS-CoV-2-specific T cell immunity, as well as a more rapid antibody response. At the molecular level, eukaryotic initiation factor 2 signaling was found to be upregulated in patients bearing Δ382, and its associated genes were correlated with systemic levels of T cell-associated and pro-inflammatory cytokines. This study provides more in-depth insight into the host–pathogen interactions of ORF8 with great promise as a therapeutic target to combat SARS-CoV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document