LQR for State-Bounded Structural Control

1996 ◽  
Vol 118 (1) ◽  
pp. 113-119 ◽  
Author(s):  
C.-H. Chuang ◽  
D.-N. Wu ◽  
Q. Wang

In order to prevent structural damages, it is more important to bound the vibration amplitude than to reduce the vibration energy. However, in the performance index for linear quadratic regulator (LQR), the instantaneous amplitude of vibration is not minimized. An ordinary LQR may have an unacceptable amplitude at some time instant but still have a good performance. In this paper, we have developed an LQR with adjustable gains to guarantee bounds on the vibration amplitude. For scalar systems, the weighting for control is switched between two values which give a low-gain control when the amplitude is inside the bound and a high-gain control when the amplitude is going to violate the given bound. For multivariable systems, by assuming a matching condition, a similar controller structure has been obtained. This controller is favored for application since the main structure of a common LQR is not changed; the additional high-gain control is required only if the vibration amplitude fails to stay inside the bound. We have applied this controller to a five-story building with active tendon controllers. The results show that the largest oscillation at the first story stays within a given bound when the building is subject to earthquake excitation.

2008 ◽  
Vol 31 (1) ◽  
pp. 115-125 ◽  
Author(s):  
Achim Ilchmann ◽  
Eugene P. Ryan

Aerospace ◽  
2006 ◽  
Author(s):  
Eric J. Ruggiero ◽  
Daniel J. Inman

The future of space satellite technology lies in ultra-large mirrors and radar apertures for significant improvements in imaging and communication bandwidths. The availability of optical-quality membranes drives a parallel effort for structural models that can capture the dominant dynamics of large, ultra-flexible satellite payloads. Unfortunately, the inherent flexibility of membrane mirrors wrecks havoc with the payload's on-orbit stability and maneuverability. One possible means of controlling these undesirable dynamics is by embedding active piezoelectric ceramics near the boundary of the membrane mirror. In doing so, active feedback control can be used to eliminate detrimental vibration, perform static shape control, and evaluate the health of the structure. In the present work, a piezoceramic wafer was attached in a bimorph configuration near the boundary of a tensioned rectangular membrane sample. A finite element model of the system was developed to capture the relevant system dynamics from 0 – 500 Hz. The finite element model was compared to experimental results with fair agreement. Using the validated finite element models, structural control using Linear Quadratic Regulator (LQR) control techniques were then used to demonstrate effective vibration control. Typical results show that less than 12 V of actuation voltage is required to eliminate detrimental vibration of the membrane samples in less than 15 ms. The functional gains of the active system are also derived and presented. These spatially descriptive control terms dictate favorable regions within the membrane domain to place sensors.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Chiu-Keng Lai

Sliding mode control (SMC) is rapped for the chattering due to high gain control. However, high gain control causes the system robust. For developing a system with robustness of SMC, a servo motor motion controller combining the two-degree-of-freedom (2DOF) system and SMC is proposed. The discussed motion type is point-to-point control with the constraint of trapezoid velocity profile. SMC is designed to guide the motor motion to follow a predefined trail, and the inner 2DOF system is used to compensate the deterioration due to the adoption of load observer. The proposed hybrid system is realized on a PC-based motion controller, and the validness is verified by simulation and experimental results.


Author(s):  
Giacomo Canciello ◽  
Alberto Cavallo ◽  
Egidio D'Amato ◽  
Massimiliano Mattei

2010 ◽  
Vol 163-167 ◽  
pp. 3461-3464
Author(s):  
Chuan Fu

This paper examines the effectiveness of the Active Tuned Liquid Column Gas Damper (ATLCGD) when equipped on the plan-asymmetric structures subjected to earthquake excitation. The active behaviour is obtained by adjusting the pressure at the end of the liquid column using a pressurised reservoir. The classical linear quadratic regulator (LQR) control strategy is applied to determine optimal control force of the ATLCGDs. A case study of a four-storey asymmetric structure is conducted to illustate excellent control efficacy of the proposed active TLCGD control system.


Sign in / Sign up

Export Citation Format

Share Document