Infrared Sensing for On-Line Weld Geometry Monitoring and Control

1995 ◽  
Vol 117 (3) ◽  
pp. 323-330 ◽  
Author(s):  
P. Banerjee ◽  
S. Govardhan ◽  
H. C. Wikle ◽  
J. Y. Liu ◽  
B. A. Chin

This paper describes a method for on-line weld geometry monitoring and control using a single front-side infrared sensor. Variations in plate thickness, shielding gas composition and minor element content are known to cause weld geometry changes. These changes in the weld geometry can be distinctly detected from an analysis of temperature gradients computed from infrared data. Deviations in temperature gradients were used to control the bead width and depth of penetration during the welding process. The analytical techniques described in this paper have been used to control gas tungsten arc and gas metal arc welding processes.

Author(s):  
Daniel Huggett ◽  
Muhammad Wahab ◽  
T. W. Liao ◽  
Ayman Okeil

Non-Destructive Evaluation (NDE) of welded structures is essential in industry and manufacturing sectors. However, NDE techniques are limited when applied at high temperatures, which prevents usefulness for on-line real time inspection of welded joints. In this work, a high temperature (HT) inspection system was created utilizing Phased Array Ultrasonic Testing (PAUT), and tested on Friction Stir (FS) welded aluminum alloy joints. The system created in this work proves HT-PAUT is capable of determining defects during the welding process. Supplementing this work, a custom defect detection software was created to analyze S-Scan data to interpret when and where a defect occurs to provide defect indicator signals. These defect signals can be utilized for controlling the FSW process parameters to automatically correct if a defect is observed. The technology developed can be utilized as a platform for future automated welding processes and control for creating the next generation weld-NDE systems.


Author(s):  
Hang Li ◽  
Hongseok Choi ◽  
Chao Ma ◽  
Jingzhou Zhao ◽  
Hongrui Jiang ◽  
...  

Process physics understanding, real time monitoring, and control of various manufacturing processes, such as battery manufacturing, are crucial for product quality assurance. While ultrasonic welding has been used for joining batteries in electric vehicles (EVs), the welding physics, and process attributes, such as the heat generation and heat flow during the joining process, is still not well understood leading to time-consuming trial-and-error based process optimization. This study is to investigate thermal phenomena (i.e., transient temperature and heat flux) by using micro thin-film thermocouples (TFTC) and thin-film thermopile (TFTP) arrays (referred to as microsensors in this paper) at the very vicinity of the ultrasonic welding spot during joining of three-layered battery tabs and Cu buss bars (i.e., battery interconnect) as in General Motors's (GM) Chevy Volt. Microsensors were first fabricated on the buss bars. A series of experiments were then conducted to investigate the dynamic heat generation during the welding process. Experimental results showed that TFTCs enabled the sensing of transient temperatures with much higher spatial and temporal resolutions than conventional thermocouples. It was further found that the TFTPs were more sensitive to the transient heat generation process during welding than TFTCs. More significantly, the heat flux change rate was found to be able to provide better insight for the process. It provided evidence indicating that the ultrasonic welding process involves three distinct stages, i.e., friction heating, plastic work, and diffusion bonding stages. The heat flux change rate thus has significant potential to identify the in-situ welding quality, in the context of welding process monitoring, and control of ultrasonic welding process. The weld samples were examined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) to study the material interactions at the bonding interface as a function of weld time and have successfully validated the proposed three-stage welding theory.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1659
Author(s):  
Sasan Sattarpanah Karganroudi ◽  
Mahmoud Moradi ◽  
Milad Aghaee Attar ◽  
Seyed Alireza Rasouli ◽  
Majid Ghoreishi ◽  
...  

This study involves the validating of thermal analysis during TIG Arc welding of 1.4418 steel using finite element analyses (FEA) with experimental approaches. 3D heat transfer simulation of 1.4418 stainless steel TIG arc welding is implemented using ABAQUS software (6.14, ABAQUS Inc., Johnston, RI, USA), based on non-uniform Goldak’s Gaussian heat flux distribution, using additional DFLUX subroutine written in the FORTRAN (Formula Translation). The influences of the arc current and welding speed on the heat flux density, weld bead geometry, and temperature distribution at the transverse direction are analyzed by response surface methodology (RSM). Validating numerical simulation with experimental dimensions of weld bead geometry consists of width and depth of penetration with an average of 10% deviation has been performed. Results reveal that the suggested numerical model would be appropriate for the TIG arc welding process. According to the results, as the welding speed increases, the residence time of arc shortens correspondingly, bead width and depth of penetration decrease subsequently, whilst simultaneously, the current has the reverse effect. Finally, multi-objective optimization of the process is applied by Derringer’s desirability technique to achieve the proper weld. The optimum condition is obtained with 2.7 mm/s scanning speed and 120 A current to achieve full penetration weld with minimum fusion zone (FZ) and heat-affected zone (HAZ) width.


Sign in / Sign up

Export Citation Format

Share Document