Elaboration of Conductive Thermal Storage Composites Made of Phase Change Materials and Graphite for Solar Plant

2007 ◽  
Vol 130 (1) ◽  
Author(s):  
S. Pincemin ◽  
X. Py ◽  
R. Olives ◽  
M. Christ ◽  
O. Oettinger

New thermal storage composites made of graphite and PCM (NaNO3∕KNO3 eutectic) have been developed for solar thermal power plants using direct solar steam generation. Those materials, obtained using different elaboration routes (compounding, infiltration, cold compression) and graphite types, are presented with their respective properties (enhanced thermal conductivities, thermal storage capacities, stability) and compared together. Both the laboratory and industrial scales and grades are considered and compared. The infiltration route has been found to be inefficient before the two other ones. Compound composites present isotropic properties and thermal conductivity intensification in the medium range (a factor of 10 for 7wt% in graphite). Cold compressed composites present highly anisotropic properties and strong intensification in thermal conductivity (a factor of 31 at 200°C for 20wt% in graphite). Their melting and solidification temperatures as well as their intrinsic storage capacity are close to the pure salt ones.

1989 ◽  
Vol 111 (3) ◽  
pp. 193-203
Author(s):  
James A. Dirks ◽  
Clement J. Chiang

Typically, solar thermal power plants are designed to minimize the levelized energy cost. However, to maximize the benefit of a solar plant and, hence, maximize the wealth of an investor or a utility, a solar plant should be designed and operated with the objective of maximizing the value-to-cost ratio. This paper describes a value and cost analysis of solar central receiver power plants using molten salt external receiver technology. These plants were assumed to operate within the service area of the Southern California Edison Company. The SOLERGY computer code was used to simulate the performance of the solar plants using 1984 weather data for Barstow, California. A value-maximizing dispatch strategy that uses thermal storage to shift operation of the turbine from nonpeak demand periods to the utility’s peak demand period, is shown to greatly increase the value of a solar central receiver power plant with little increase in the levelized energy cost. Results are presented as functions of storage capacity, type of dispatch strategy, size of the field relative to the turbine, and turbine size.


Author(s):  
A. Giostri ◽  
M. Binotti ◽  
P. Silva ◽  
E. Macchi ◽  
G. Manzolini

Parabolic trough can be considered the state of the art for solar thermal power plants thanks to the almost 30 years experience gained in SEGS and, recently, Nevada Solar One plants in US and Andasol plants in Spain. One of the major issues that limits the wide diffusion of this technology is the high investment cost of the solar field and, particularly, of the solar collector. For this reason, since several years research activity has been trying to develop new solutions with the aim of cost reduction. This work compares commercial Fresnel technology with conventional parabolic trough plant based on synthetic oil as heat transfer fluid at nominal conditions and evaluates yearly average performances. In both technologies, no thermal storage system is considered. In addition, for Fresnel, a Direct Steam Generation (DSG) case is investigated. Performances are calculated by a commercial code, Thermoflex®, with dedicated component to evaluate solar plant. Results will show that, at nominal conditions, Fresnel technology have an optical efficiency of 67% which is lower than 75% of parabolic trough. Calculated net electric efficiency is about 19.25%, while parabolic trough technology achieves 23.6%. In off-design conditions, the gap between Fresnel and parabolic trough increases because the former is significantly affected by high radiation incident angles. The calculated sun-to-electric annual average efficiency for Fresnel plant is 10.2%, consequence of the average optical efficiency of 38.8%, while parabolic trough achieve an overall efficiency of 16%, with an optical one of 52.7%. An additional case with Fresnel collector and synthetic oil outlines differences among investigated cases. Finally, because part of performance difference between PT and Fresnel is simple due to different definitions, additional indexes are introduced in order to make a consistent comparison.


2017 ◽  
Vol 21 (6 Part A) ◽  
pp. 2525-2532 ◽  
Author(s):  
Shailendra Kumar ◽  
Kishan Kumar

The present study explores suitability of two phase change materials (PCM) for development of an active thermal storage system for a solar drying kiln by studying their melting and solidification behaviors. A double glass glazing prototype solar kiln was used in the study. The storage system consisted of a water storage tank with PCM placed inside the water in high density polyethylene containers. The water in the tank was heated with help of solar energy using an evacuated tube collector array. The melting and solidification temperature curves of PCM were obtained by charging and discharging the water tank. The study illustrated the utility of the PCM in using the stored thermal energy during their discharge to enhance the temperature inside the kiln. The rate of temperature reduction was found to be higher for paraffin wax as compared to a fatty acid based PCM. The water temperature during the discharge of the PCM showed dependence on the discharge characteristics of each PCM suggesting their suitability in designing active thermal storage systems.


2002 ◽  
Vol 124 (2) ◽  
pp. 126-133 ◽  
Author(s):  
Eduardo Zarza ◽  
Loreto Valenzuela ◽  
Javier Leo´n ◽  
H.-Dieter Weyers ◽  
Martin Eickhoff ◽  
...  

The DISS (DIrect Solar Steam) project is a complete R+TD program aimed at developing a new generation of solar thermal power plants with direct steam generation (DSG) in the absorber tubes of parabolic trough collectors. During the first phase of the project (1996-1998), a life-size test facility was implemented at the Plataforma Solar de Almerı´a (PSA) to investigate the basic DSG processes under real solar conditions and evaluate the unanswered technical questions concerning this new technology. This paper updates DISS project status and explains O&M-related experience (e.g., main problems faced and solutions applied) with the PSA DISS test facility since January 1999.


2020 ◽  
pp. 004051752097561
Author(s):  
Wei Zhang ◽  
Shang Hao ◽  
Jiali Weng ◽  
Yibo Zhang ◽  
Jiming Yao ◽  
...  

We report on the impregnation-based preparation of composite phase change materials (CPCMs) with thermal storage properties, using paraffin wax and multi-walled carbon nanotubes (MWCNTs). We coated the CPCMs on the fabric by scraper coating, then evaluated their shape stability, latent heat, thermal conductivity, thermal storage stability and photo-thermal effects. Results show that CPCMs with 10% acid-oxidized MWCNTs introduce only a small phase leakage when heated at 50℃ for 900 s; their latent heat energy reduces by 16.5%, while their thermal conductivity increases by 131.9% compared to pure paraffin. When exposed to sunlight at an ambient temperature of 12.5℃, the cotton fabrics coated with CPCMs record a 12.8℃ higher surface temperature than the pristine fabric, while their heat dissipation is delayed by 120–180 s. The fabric surface temperature increases to twice the ambient temperature during daytime. Overall, these findings indicate that the coated fabric has excellent thermal stability, affirming its potential as photo-thermal functional material.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
A. Giostri ◽  
M. Binotti ◽  
P. Silva ◽  
E. Macchi ◽  
G. Manzolini

Parabolic trough (PT) technology can be considered the state of the art for solar thermal power plants thanks to the almost 30 yr of experience gained in SEGS and, recently, Nevada Solar One plants in the United States and Andasol plant in Spain. One of the major issues that limits the wide diffusion of this technology is the high investment cost of the solar field and, particularly, of the solar collector. For this reason, research has focused on developing new solutions that aim to reduce costs. This paper compares, at nominal conditions, commercial Fresnel technology for direct steam generation with conventional parabolic trough technology based on synthetic oil as heat-transfer. The comparison addresses nominal conditions as well as annual average performance. In both technologies, no thermal storage system is considered. Performance is calculated by Thermoflex®, a commercial code, with a dedicated component to evaluate solar plant. Results will show that, at nominal conditions, Fresnel technology has an optical efficiency of 67%, which is lower than the 75% efficiency of the parabolic trough. Calculated net electric efficiency is about 19.25%, whereas PT technology achieves 23.6% efficiency. In off-design conditions, the performance gap between Fresnel and parabolic trough increases because the former is significantly affected by high incident angles of solar radiation. The calculated sun-to-electric annual average efficiency for a Fresnel plant is 10.2%, which is a consequence of the average optical efficiency of 38.8%; a parabolic trough achieves an overall efficiency of 16%, with an optical efficiency of 52.7%. An additional case with a Fresnel collector and synthetic-oil outlines the differences among the cases investigated. Since part of the performance difference between Fresnel and PT technologies is simply due to different definitions, we introduce additional indexes to make a consistent comparison. Finally, a simplified economic assessment shows that Fresnel collectors must reduce investment costs of at least 45% than parabolic trough to achieve the same levelized cost of electricity.


Sign in / Sign up

Export Citation Format

Share Document