Forced Harmonic Response of Grouped Blade Systems: Part II—Application

1996 ◽  
Vol 118 (1) ◽  
pp. 137-145 ◽  
Author(s):  
L. F. Wagner ◽  
J. H. Griffin

The vibration of grouped blades on a flexible disk should, for purposes of economy and clarity of modal identification, be analyzed using procedures developed for cyclically symmetric structures. In this paper, a numerical model, based on the theory of cyclically symmetric structures, is applied to the vibration analysis, and in particular, the harmonic response, of a flexible disk supporting a number of groups, or packets, of turbine blades. Results are presented to show variations in the modal participation factors as a function of such parameters as disk flexibility, blade density, and the total number of assembled groups. It is also shown that many characteristics of the system spectra of natural frequencies are strongly dependent on the number of blade groups.

Author(s):  
L. F. Wagner ◽  
J. H. Griffin

The vibration of grouped blades on a flexible disk should, for purposes of economy and clarity of modal identification, be analyzed using procedures developed for cyclically-symmetric structures. In this paper, a numerical model, based on the theory of cyclically-symmetric structures, is applied to the vibration analysis, and in particular, the harmonic response, of a flexible disk supporting a number of groups, or packets, of turbine blades. Results are presented to show variations in the modal participation factors as a function of such parameters as disk flexibility, blade density, and the total number of assembled groups. It is also shown that many characteristics of the system spectra of natural frequencies are strongly dependent on the number of blade groups.


Author(s):  
O. Repetski ◽  
K. Zainchkovski

The proposed algorithm permits one to determine the sensitivity coefficients of natural frequencies and dynamic displacements and stresses in the free- and forced vibration analysis. This algorithm is presented in a computer program with the help of finite element method (FEM). The design variables is the thickness of the blades. Usually a maximum resonance accounts more than half the damage and deterioration of machine components. The analysis of dynamic stress sensitivity distribution for this resonance permits us to control for both the endurance of machines and their components based on the thickness. In this study the sensitivity coefficients for both free vibration, dynamic resonances are investigated by acceleration and braking the regimes.


Author(s):  
C L Ko

Governing equations for free vibrations of thin orthotropic or isotropic helicoidal plates are formulated by expressing displacements in terms of components in a helical orthogonal coordinate system. Equations derived for isotropic helicoidal plates are applied to the vibration problem of twisted rectangular turbine blades without camber. These twisted cantilever rectangular blades are simulated to be isotropic helicoidal plates with their angles of twist approximated to be their centre-line helical angles. Natural frequencies are calculated by solving the eigenvalue problem using the finite difference method and are compared to experimental measurements reported in the literature. Reasonably good agreement has been found for flexural modes; however, some discrepancies have also been observed for higher-order modes due to the inaccuracy of modelling the blade geometry as that of a helicoidal plate and due to the approximation of assuming the angle of twist to be the helical angle.


2014 ◽  
Vol 21 (4) ◽  
pp. 571-587 ◽  
Author(s):  
Hamid Reza Saeidi Marzangoo ◽  
Mostafa Jalal

AbstractFree vibration analysis of functionally graded (FG) curved panels integrated with piezoelectric layers under various boundary conditions is studied. A panel with two opposite edges is simply supported, and arbitrary boundary conditions at the other edges are considered. Two different models of material property variations based on the power law distribution in terms of the volume fractions of the constituents and the exponential law distribution of the material properties through the thickness are considered. Based on the three-dimensional theory of elasticity, an approach combining the state space method and the differential quadrature method (DQM) is used. For the simply supported boundary conditions, closed-form solution is given by making use of the Fourier series expansion, and applying the differential quadrature method to the state space formulations along the axial direction, new state equations about state variables at discrete points are obtained for the other cases such as clamped or free-end conditions. Natural frequencies of the hybrid curved panels are presented by solving the eigenfrequency equation, which can be obtained by using edges boundary conditions in this state equation. The results obtained for only FGM shell is verified by comparing the natural frequencies with the results obtained in the literature.


2021 ◽  
Vol 35 (4) ◽  
pp. 544-553
Author(s):  
Yan-fei Chen ◽  
Zhi-peng Zang ◽  
Shao-hua Dong ◽  
Chuan Ao ◽  
Hao Liu ◽  
...  

Author(s):  
Mahesh M. Bhat ◽  
V. Ramamurti ◽  
C. Sujatha

Abstract Steam turbine blade is a very complex structure. It has geometric complexities like variation of twist, taper, width and thickness along its length. Most of the time these variations are not uniform. Apart from these geometric complexities, the blades are coupled by means of lacing wire, lacing rod or shroud. Blades are attached to a flexible disc which contributes to the dynamic behavior of the blade. Root fixity also plays an important role in this behavior. There is a considerable variation in the frequencies of blades of newly assembled turbine and frequencies after some hours of running. Again because of manufacturing tolerances there can be some variation in the blade to blade frequencies. Determination of natural frequencies of the blade is therefore a very critical job. Problems associated with typical industrial turbine bladed discs of a 235 MW steam turbine are highlighted in this paper.


Author(s):  
Yaozhi Lu ◽  
Fanzhou Zhao ◽  
Loic Salles ◽  
Mehdi Vahdati

The current development of wind turbines is moving toward larger and more flexible units, which can make them prone to fatigue damage induced by aeroelastic vibrations. The estimation of the total life of the composite components in a wind turbine requires the knowledge of both low and high cycle fatigue (LCF and HCF) data. The first aim of this study is to produce a validated numerical model, which can be used for aeroelastic analysis of wind turbines and is capable of estimating the LCF and HCF loads on the blade. The second aim of this work is to use the validated numerical model to assess the effects of extreme environmental conditions (such as high wind speeds) and rotor over-speed on low and high cycle fatigue. Numerical modelling of this project is carried out using the Computational Fluid Dynamics (CFD) & aeroelasticity code AU3D, which is written at Imperial College and developed over many years with the support from Rolls-Royce. This code has been validated extensively for unsteady aerodynamic and aeroelastic analysis of high-speed flows in gas turbines, yet, has not been used for low-speed flows around wind turbine blades. Therefore, in the first place the capability of this code for predicting steady and unsteady flows over wind turbines is studied. The test case used for this purpose is the Phase VI wind turbine from the National Renewable Energy Laboratory (NREL), which has extensive steady, unsteady and mechanical measured data. From the aerodynamic viewpoint of this study, AU3D results correlated well with the measured data for both steady and unsteady flow variables, which indicated that the code is capable of calculating the correct flow at low speeds for wind turbines. The aeroelastic results showed that increase in crosswind and shaft speed would result in an increase of unsteady loading on the blade which could decrease the lifespan of a wind turbine due to HCF. Shaft overspeed leads to significant increase in steady loading which affects the LCF behaviour. Moreover, the introduction of crosswind could result in significant dynamic vibration due to forced response at resonance.


Sign in / Sign up

Export Citation Format

Share Document