Airfoil Section Characteristics at a Low Reynolds Number

1997 ◽  
Vol 119 (1) ◽  
pp. 129-135 ◽  
Author(s):  
Shigeru Sunada ◽  
Akitoshi Sakaguchi ◽  
Keiji Kawachi

The aerodynamic characteristics of airfoils operating at Re = 4 × 103 were examined, varying the parameters related to the airfoil shape such as thickness, camber, and roughness. Airfoils with good aerodynamic performance at this Re have the following shape characteristics: (1) they are thinner than airfoils for higher Re numbers, (2) they have a sharp leading edge, and (3) they have a camber of about five percent with its maximum camber at about mid-chord. The characteristics of airfoils are strongly affected by leading edge vortices. The measured two-dimensional airfoil characteristics indicate that the planform, which greatly affects the flight performance of the three-dimensional wing at high Reynolds numbers, has little effect on the flight performance at this Reynolds number.

2016 ◽  
Vol 792 ◽  
pp. 682-711 ◽  
Author(s):  
Michael O. John ◽  
Dominik Obrist ◽  
Leonhard Kleiser

The leading-edge boundary layer (LEBL) in the front part of swept airplane wings is prone to three-dimensional subcritical instability, which may lead to bypass transition. The resulting increase of airplane drag and fuel consumption implies a negative environmental impact. In the present paper, we present a temporal biglobal secondary stability analysis (SSA) and direct numerical simulations (DNS) of this flow to investigate a subcritical transition mechanism. The LEBL is modelled by the swept Hiemenz boundary layer (SHBL), with and without wall suction. We introduce a pair of steady, counter-rotating, streamwise vortices next to the attachment line as a generic primary disturbance. This generates a high-speed streak, which evolves slowly in the streamwise direction. The SSA predicts that this flow is unstable to secondary, time-dependent perturbations. We report the upper branch of the secondary neutral curve and describe numerous eigenmodes located inside the shear layers surrounding the primary high-speed streak and the vortices. We find secondary flow instability at Reynolds numbers as low as$Re\approx 175$, i.e. far below the linear critical Reynolds number$Re_{crit}\approx 583$of the SHBL. This secondary modal instability is confirmed by our three-dimensional DNS. Furthermore, these simulations show that the modes may grow until nonlinear processes lead to breakdown to turbulent flow for Reynolds numbers above$Re_{tr}\approx 250$. The three-dimensional mode shapes, growth rates, and the frequency dependence of the secondary eigenmodes found by SSA and the DNS results are in close agreement with each other. The transition Reynolds number$Re_{tr}\approx 250$at zero suction and its increase with wall suction closely coincide with experimental and numerical results from the literature. We conclude that the secondary instability and the transition scenario presented in this paper may serve as a possible explanation for the well-known subcritical transition observed in the leading-edge boundary layer.


2016 ◽  
Vol 28 (3) ◽  
pp. 273-285
Author(s):  
Katsuya Hirata ◽  
◽  
Ryo Nozawa ◽  
Shogo Kondo ◽  
Kazuki Onishi ◽  
...  

[abstFig src='/00280003/02.jpg' width=""300"" text='Iso-Q surfaces of very-slow flow past an iNACA0015' ] The airfoil is often used as the elemental device for flying/swimming robots, determining its basic performances. However, most of the aerodynamic characteristics of the airfoil have been investigated at Reynolds numbers Re’s more than 106. On the other hand, our knowledge is not enough in low Reynolds-number ranges, in spite of the recent miniaturisation of robots. In the present study, referring to our previous findings (Hirata et al., 2011), we numerically examine three kinds of high-performance airfoils proposed for very-low Reynolds numbers; namely, an iNACA0015 (the NACA0015 placed back to front), an FPBi (a flat plate blended with iNACA0015 as its upper half) and an FPBN (a flat plate blended with the NACA0015 as its upper half), in comparison with such basic airfoils as a NACA0015 and an FP (a flat plate), at a Reynolds number Re = 1.0 × 102 using two- and three-dimensional computations. As a result, the FPBi shows the best performance among the five kinds of airfoils.


2012 ◽  
Vol 702 ◽  
pp. 298-331 ◽  
Author(s):  
Promode R. Bandyopadhyay ◽  
David N. Beal ◽  
J. Dana Hrubes ◽  
Arun Mangalam

AbstractHydrodynamic effects of the relationship between the roll and pitch oscillations in low-aspect-ratio fins, with a laminar section and a rounded leading edge, flapping at transitional to moderately high Reynolds numbers, are considered. The fin is hinged at one end and its roll amplitude is large. Also examined is how this relationship is affected by spanwise twist, which alters the pitch oscillation amplitude and its phase relative to the roll motion. Force, efficiency and surface hot-film-anemometry measurements, and flow visualization are carried out in a tow tank. A fin of an abstracted penguin-wing planform and a NACA 0012 cross-section is used, and the chord Reynolds number varies from 3558 to 150 000 based on total speed. The fin is forced near the natural shedding frequency. Strouhal number and pitch amplitude are directly related when thrust is produced, and efficiency is maximized in narrow combinations of Strouhal number and pitch amplitude when oscillation of the leading-edge stagnation point is minimal. Twist makes the angle of attack uniform along the span and enhances thrust by up to 24 %, while maintaining high efficiency. Only 5 % of the power required to roll is spent to pitch, and yet roll and pitch are directly related. During hovering, dye visualization shows that a diffused leading-edge vortex is produced in rigid fins, which enlarges along the span; however, twist makes the vortex more uniform and the fin in turn requires less power to roll. Low-order phase maps of the measurements of force oscillation versus its derivative are modelled as due to van der Pol oscillators; the higher-order maps show trends in the sub-regimes of the transitional Reynolds number. Fin oscillation imparts a chordwise fluid motion, yielding a Stokes wave in the near-wall vorticity layer. When the roll and pitch oscillations are directly related, the wave is optimized: causing vorticity lift-up as the fin is decelerated at the roll extremity; the potential energy at the stagnation point is converted into kinetic energy; a vortex is produced as the lifted vorticity is wrapped around the leading edge; and free-stream reattachment keeps the vortex trapped. When the twist oscillation is phased along the span, this vortex becomes self-preserving at all amplitudes of twist, indicating the most stable (low-bandwidth) tuned nature.


1991 ◽  
Vol 113 (3) ◽  
pp. 405-410 ◽  
Author(s):  
Kyuro Sasaki ◽  
Masaru Kiya

This paper describes the results of a flow visualization study which concerns three-dimensional vortex structures in a leading-edge separation bubble formed along the sides of a blunt flat plate. Dye and hydrogen bubbles were used as tracers. Reynolds number (Re), based on the plate thickness, was varied from 80 to 800. For 80 < Re < 320, the separated shear layer remains laminar up to the reattachment line without significant spanwise distortion of vortex filaments. For 320 < Re < 380, a Λ-shaped deformation of vortex filaments appears shortly downstream of the reattachment and is arranged in-phase in the downstream direction. For Re > 380, hairpin-like structures are formed and arranged in a staggered manner. The longitudinal and spanwise distances of the vortex arrangement are presented as functions of the Reynolds number.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Saeed Jamei ◽  
Adi Maimun Abdul Malek ◽  
Shuhaimi Mansor ◽  
Nor Azwadi Che Sidik ◽  
Agoes Priyanto

Wing configuration is a parameter that affects the performance of wing-in-ground effect (WIG) craft. In this study, the aerodynamic characteristics of a new compound wing were investigated during ground effect. The compound wing was divided into three parts with a rectangular wing in the middle and two reverse taper wings with anhedral angle at the sides. The sectional profile of the wing model is NACA6409. The experiments on the compound wing and the rectangular wing were carried to examine different ground clearances, angles of attack, and Reynolds numbers. The aerodynamic coefficients of the compound wing were compared with those of the rectangular wing, which had an acceptable increase in its lift coefficient at small ground clearances, and its drag coefficient decreased compared to rectangular wing at a wide range of ground clearances, angles of attack, and Reynolds numbers. Furthermore, the lift to drag ratio of the compound wing improved considerably at small ground clearances. However, this improvement decreased at higher ground clearance. The drag polar of the compound wing showed the increment of lift coefficient versus drag coefficient was higher especially at small ground clearances. The Reynolds number had a gradual effect on lift and drag coefficients and also lift to drag of both wings. Generally, the nose down pitching moment of the compound wing was found smaller, but it was greater at high angle of attack and Reynolds number for all ground clearance. The center of pressure was closer to the leading edge of the wing in contrast to the rectangular wing. However, the center of pressure of the compound wing was later to the leading edge at high ground clearance, angle of attack, and Reynolds number.


Author(s):  
Toyotaka Sonoda ◽  
Rainer Schnell ◽  
Toshiyuki Arima ◽  
Giles Endicott ◽  
Eberhard Nicke

In this paper, Reynolds effects on a modern transonic low-aspect-ratio fan rotor (Baseline) and the re-designed (optimized) rotor performance are presented with application to a small turbofan engine. The re-design has been done using an in-house numerical optimization system in Honda and the confirmation of the performance was carried out using DLR’s TRACE RANS stage code, assessed with respect to experimental data obtained from a small scale compressor rig in Honda. The baseline rotor performance is evaluated at two Reynolds number conditions, a high Reynolds condition (corresponding to a full engine scale size) and a low Reynolds number condition (corresponding to the small scale compressor rig size), using standard ISA conditions. The performance of the optimized rotor was evaluated at the low Reynolds number condition. The CFD results show significant discrepancies in the rotor efficiency (about 1% at cruise) between these two points due to the different Reynolds numbers. The optimized rotor’s efficiency is increased compared to the baseline. A unique negative curvature region close to the leading edge on the pressure surface of the optimized rotor is one of the reasons why the optimized rotor is superior to the baseline.


2020 ◽  
Vol 61 (9) ◽  
Author(s):  
K. Fujiwara ◽  
R. Sriram ◽  
K. Kontis

Abstract Leading-edge separated flow field over a sharp flat plate is experimentally investigated in Reynolds numbers ranging from 6.2 × 103 to 4.1 × 104, using particle image velocimetry (PIV) and its statistics. It was observed that the average reattachment length is nearly independent of Reynolds number and the small secondary bubble observed near the leading edge was found to shrink with increasing Reynolds number. The wall-normal profiles of the statistical values of kinematic quantities such as the velocity components and their fluctuations scaled well with average reattachment length lR and freestream velocity U∞. Their magnitudes compare well with previous investigations even though the current triangular shaped sharp leading edge is different from previous flat-faced or semi-circular ones. The shear layer was observed to exhibit 2 different linear growth rates over 2 distinct regions. Instantaneous PIV realizations demonstrate unsteady nature of the separation bubble, whose origins in the upstream portion of the bubble are analysed. Bimodal nature of the probability density function (PDF) of fluctuating streamwise velocity at around x/lR = 0.08–0.15 indicates successive generation and passage of vortices in the region, which subsequently interact and evolve into multiscale turbulent field exhibiting nearly Gaussian PDF. Shedding of vortices with wide range of scales are apparent in most of the instantaneous realizations. Proper Orthogonal Decomposition (POD) of the velocity fluctuation magnitude field revealed that the flow structures of the dominant modes and their relative energies are independent of Reynolds number. In each of the dominant modes (first 3 modes), the length scales corresponding to the large scale structures and their spacing are the same for all Reynolds numbers, suggesting that their Strouhal number (observed to be ~ 0.09–0.2 at Reynolds number of 6.2 × 103) of unsteadiness should also be independent of Reynolds number. A single large structure- comparable in size to lR—was apparent well before reattachment in a few instantaneous realizations, as compared to multiple small-scale structures visible in most realizations; at Reynolds number of 6.2 × 103, realizations with such large-scale structures occurred approximately after every 20–30 realizations, corresponding to non-dimensional frequency of 0.4–0.6, which is identified to be the “regular shedding”. It was possible to reconstruct the large-scale structure during the instances from just the first 3 POD modes, indicating that the Strouhal number of regular shedding too is independent of Reynolds number. Graphic abstract


2013 ◽  
Vol 733 ◽  
pp. 171-188 ◽  
Author(s):  
Alexis Espinosa-Gayosso ◽  
Marco Ghisalberti ◽  
Gregory N. Ivey ◽  
Nicole L. Jones

AbstractParticle capture, whereby suspended particles contact and adhere to a solid surface (a ‘collector’), is an important mechanism for a range of environmental processes including suspension feeding by corals and ‘filtering’ by aquatic vegetation. In this paper, we use two- and three-dimensional direct numerical simulations to quantify the capture efficiency ($\eta $) of low-inertia particles by a circular cylindrical collector at intermediate Reynolds numbers in the vortex-shedding regime (i.e. for $47\lt \mathit{Re}\leq 1000$, where $\mathit{Re}$ is the collector Reynolds number). We demonstrate that vortex shedding induces oscillations near the leading face of the collector which greatly affect the quantity and distribution of captured particles. Unlike in steady, low-$\mathit{Re}$ flow, particles directly upstream of the collector are not the most likely to be captured. Our results demonstrate the dependence of the time-averaged capture efficiency on $\mathit{Re}$ and particle size, improving the predictive capability for the capture of particles by aquatic collectors. The transition to theoretical high-Reynolds-number behaviour (i.e. $\eta \sim {\mathit{Re}}^{1/ 2} $) is complex due to comparatively rapid changes in wake conditions in this Reynolds number range.


1967 ◽  
Vol 18 (2) ◽  
pp. 165-184 ◽  
Author(s):  
M. Gaster

SummaryFlight tests on the Handley Page suction wing showed that turbulence at the wing root can propagate along the leading edge and cause the whole flow to be turbulent. The flow on the attachment line of a swept wing was studied in a low speed wind tunnel with particular reference to this problem of turbulent contamination.The critical Reynolds number, RθL, of the attachment-line boundary layer for the spanwise spread of turbulence was found to be about 100 for sweep angles in the range 40°–60°. A device was developed to act as a barrier to the turbulent root flow so that a clean laminar flow could exist outboard. This device was shown to be effective up to an Rθ of at least 170, so that experiments were possible on a laminar boundary layer at Reynolds numbers above the lower critical value. A spark was used to introduce spots of turbulence into the attachment-line boundary layer and the propagation speeds of the leading and trailing edges were measured. The spots expanded, the leading edge moving faster than the trailing edge, at high Reynolds numbers, and contracted at low values.The behaviour of Tollmien-Schlichting waves was also investigated by exciting the flow with sound emanating from a small hole on the attachment line. Measurements of the perturbation phase and amplitude were made downstream of the source and, although accurate values of wave length and propagation speed could be found, difficulties were experienced in evaluating the amplification ratio. Nevertheless, all small disturbances decayed at a sufficient distance from the source hole up to the highest available Reynolds number of 170.


Sign in / Sign up

Export Citation Format

Share Document