Heat Transfer Enhancement by Fins in the Microscale Regime

1999 ◽  
Vol 121 (4) ◽  
pp. 972-977 ◽  
Author(s):  
F.-C. Chou ◽  
J. R. Lukes ◽  
C.-L. Tien

The current literature contains many studies of microchannel and micro-pin-fin heat exchangers, but none of them consider the size effect on the thermal conductivity of channel and fin walls. The present study analyzes the effect of size (i.e., the microscale effect) on the microfin performance, particularly in the cryogenic regime where the microscale effect is often appreciable. The size effect reduces the thermal conductivity of microchannel and microfin walls and thus reduces the heat transfer rate. For this reason, heat transfer enhancement by microfins becomes even more important than for macroscale fins. The need for better understanding of heat transfer enhancement by microfins motivates the current study, which resolves three basic issues. First, it is found that the heat, flow choking can occur even in the case of simple plate fins or pin fins in the microscale regime, although choking is usually caused by the accommodation of a cluster of fins at the fin tip. Second, this paper shows that the use of micro-plate-fin arrays yields a higher heat transfer enhancement ratio than the use of the micro-pin-fin arrays due to the stronger reduction of thermal conductivity in micro-pin-fins. The third issue is how the size effect influences the fin thickness optimization. For convenience in design applications, an equation for the optimum fin thickness is established which generalizes the case without the size effect as first reported by Tuckerman and Pease.

1998 ◽  
Vol 120 (2) ◽  
pp. 362-367 ◽  
Author(s):  
M. K. Chyu ◽  
Y. C. Hsing ◽  
V. Natarajan

The present study explores the heat transfer enhancement induced by arrays of cubic fins. The fin element is either a cube or a diamond in shape. The array configurations studied include both in-line and staggered arrays of seven rows and five columns. Both cubic arrays have the same geometric parameters, i.e., H/D = 1, S/D = X/D = 2.5, which are similar to those of earlier studies on circular pin-fin arrays. The present results indicate that the cube element in either array always yields the highest heat transfer, followed by diamond and circular pin-fin. Arrays with diamond-shaped elements generally cause the greater pressure loss than those with either cubes or pin fins. For a given element shape, a staggered array generally produces higher heat transfer enhancement and pressure loss than the corresponding inline array. Cubic arrays can be viable alternatives for pedestal cooling near a blade trailing edge.


Author(s):  
G. N. Xie ◽  
B. Sunde´n ◽  
L. K. Wang ◽  
E. Utriainen

A common way to cool the tip is to use serpentine passages with 180-deg turn under the blade tip-cap. Improving internal convective cooling is therefore required to increase the blade tip life. In this paper, augmented heat transfer of a blade tip has been investigated numerically. The computational models consist of a two-pass channel with 180-deg turn and pin-fins mounted on the tip-cap, and a smooth two-pass channel. On the other hand, In particular manufacture, the casting process does not make a perfect cylinder pin, a fillet needs to be placed at the endwall. In order to make the conditions of simulations as close to real practice as possible, it is desirable to examine the effect of fillet on the tip heat transfer. Therefore, in the present study, the effect of pin base-fillet on heat transfer enhancement of a blade pin-finned tip-wall is investigated numerically. Inlet Reynolds numbers are ranging from 100,000 to 600,000. The computations are 3D, steady, incompressible and stationary. It is found that the pin-fins make the counter-rotating vortices towards pin-fin surfaces, resulting in continuous turbulent mixing near the pin-finned tip. Due to the combination of turning, impingement and pin-fin crossflow, the heat transfer coefficient of the pin-finned tip is a factor of as much as 2.66 higher than that of a smooth tip. Besides, with base-fillets the heat transfer enhancement is increased by about 10% while almost no additional pressure loss is resulted. It is suggested that the pin-fins could be used to enhance blade tip heat transfer and cooling.


Author(s):  
M. K. Chyu ◽  
Y. C. Hsing ◽  
V. Natarajan

The present study explores the heat transfer enhancement induced by arrays of cubic fins. The fin element is either a cube or a diamond in shape. The array configurations studied include both inline and staggered arrays of seven rows and five columns. Both cubic arrays have the same geometric parameters, i.e., H/D=1, S/D=X/D=2.5, which are similar to those of earlier studies on circular pin-fin arrays. The present results indicate that the cube element in either array always yields the highest heat transfer, followed by diamond and circular pin-fin. Arrays with diamond-shaped elements generally cause the greatest pressure loss than those with either cubes or pin fins. For a given element shape, a staggered array generally produces higher heat transfer enhancement and pressure loss than the corresponding inline array. Cubic Arrays can be viable alternatives for pedestal cooling near a blade trailing edge.


2009 ◽  
Vol 132 (3) ◽  
Author(s):  
Gongnan Xie ◽  
Bengt Sundén ◽  
Esa Utriainen ◽  
Lieke Wang

Cooling methods are strongly needed for the turbine blade tips to ensure a long durability and safe operation. Improving the internal convective cooling is therefore required to increase the blade tip life. A common way to cool the tip is to use serpentine passages with 180-deg turns under the blade tip cap. In this paper, enhanced heat transfer of a blade tip cap has been investigated numerically. The computational models consist of a two-pass channel with a 180-deg turn and various arrays of pin fins mounted on the tip cap, and a smooth two-pass channel. The inlet Reynolds number is ranging from 100,000 to 600,000. The computations are 3D, steady, incompressible, and nonrotating. Details of the 3D fluid flow and heat transfer over the tip walls are presented. The effects of pin-fin height, diameter, and pitches on the heat transfer enhancement on the blade tip walls are observed. The overall performances of ten models are compared and evaluated. It is found that due to the combination of turning, impingement, and pin-fin crossflow, the heat transfer coefficient of the pin-finned tip is a factor of 2.67 higher than that of a smooth tip. This augmentation is achieved at the expense of a penalty of pressure drop around 30%. Results show that the intensity of heat transfer enhancement depends upon pin-fin configuration and arrangement. It is suggested that pin fins could be used to enhance the blade tip heat transfer and cooling.


Author(s):  
Sin Chien Siw ◽  
Minking K. Chyu ◽  
Mary Anne Alvin

A systematic experimental study has been conducted to explore the heat transfer behavior of triangular and semicircular shaped pin-fin arrays as compared to the circular shaped pin-fin array, that serve as a baseline case. The main advantage of using triangular and semi-circular shaped pin-fin arrays will results in reduced component weight and potentially increases in heat transfer performance. Three staggered arrays with different inter-pin spacing in both transverse and longitudinal are explored in order to determine the optimal configuration for these three dimensional element. Both semi-circular and circular shaped pin-fin arrays are based on typical inter-pin spacing of 2.5 times the pin diameter. The channel geometry (width, W = 76.2mm, height, E = 25.4mm) simulates an internal cooling passage of wide aspect ratio (3:1) in a gas turbine airfoil. All pin-fin elements are fully bridged from one endwall to the opposite endwall. The Reynolds number, based on the hydraulic diameter of the unobstructed cross-section and the mean bulk velocity, ranges from 10,000 to 25,000. The heat transfer measurement employs a hybrid liquid crystal imaging technique, which combined one-dimensional, transient conduction model and lumped heat-capacitance model. Triangular pin-fin arrays produce the highest heat transfer enhancement, while the semi-circular pin-fin array yields the lowest heat transfer enhancement. Sharp edges at each triangular pin-fin generated more wake and turbulence, resulting in more mixing, induces greater heat transfer enhancement by approximately 10%–20% as compared to the typical pin-fins of circular cross-section. More uniform heat transfer is also observed on the endwall and neighboring pin-fins in all triangular shaped pin-fin arrays. However, triangular pin-fin arrays give the highest pressure loss due to the largest induced form drag among all cases, while circular pin-fin array exhibits the lowest pressure loss.


Fluids ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 25
Author(s):  
Iris Gerken ◽  
Thomas Wetzel ◽  
Jürgen J. Brandner

Micro heat exchangers have been revealed to be efficient devices for improved heat transfer due to short heat transfer distances and increased surface-to-volume ratios. Further augmentation of the heat transfer behaviour within microstructured devices can be achieved with heat transfer enhancement techniques, and more precisely for this study, with passive enhancement techniques. Pin fin geometries influence the flow path and, therefore, were chosen as the option for further improvement of the heat transfer performance. The augmentation of heat transfer with micro heat exchangers was performed with the consideration of an improved heat transfer behaviour, and with additional pressure losses due to the change of flow path (pin fin geometries). To capture the impact of the heat transfer, as well as the impact of additional pressure losses, an assessment method should be considered. The overall exergy loss method can be applied to micro heat exchangers, and serves as a simple assessment for characterization. Experimental investigations with micro heat exchanger structures were performed to evaluate the assessment method and its importance. The heat transfer enhancement was experimentally investigated with microstructured pin fin geometries to understand the impact on pressure loss behaviour with air.


2015 ◽  
Vol 93 (7) ◽  
pp. 725-733 ◽  
Author(s):  
M. Ghalambaz ◽  
E. Izadpanahi ◽  
A. Noghrehabadi ◽  
A. Chamkha

The boundary layer heat and mass transfer of nanofluids over an isothermal stretching sheet is analyzed using a drift-flux model. The relative slip velocity between the nanoparticles and the base fluid is taken into account. The nanoparticles’ volume fractions at the surface of the sheet are considered to be adjusted passively. The thermal conductivity and the dynamic viscosity of the nanofluid are considered as functions of the local volume fraction of the nanoparticles. A non-dimensional parameter, heat transfer enhancement ratio, is introduced, which shows the alteration of the thermal convective coefficient of the nanofluid compared to the base fluid. The governing partial differential equations are reduced into a set of nonlinear ordinary differential equations using appropriate similarity transformations and then solved numerically using the fourth-order Runge–Kutta and Newton–Raphson methods along with the shooting technique. The effects of six non-dimensional parameters, namely, the Prandtl number of the base fluid Prbf, Lewis number Le, Brownian motion parameter Nb, thermophoresis parameter Nt, variable thermal conductivity parameter Nc and the variable viscosity parameter Nv, on the velocity, temperature, and concentration profiles as well as the reduced Nusselt number and the enhancement ratio are investigated. Finally, case studies for Al2O3 and Cu nanoparticles dispersed in water are performed. It is found that increases in the ambient values of the nanoparticles volume fraction cause decreases in both the dimensionless shear stress f″(0) and the reduced Nusselt number Nur. Furthermore, an augmentation of the ambient value of the volume fraction of nanoparticles results in an increase the heat transfer enhancement ratio hnf/hbf. Therefore, using nanoparticles produces heat transfer enhancement from the sheet.


Lab on a Chip ◽  
2014 ◽  
Vol 14 (17) ◽  
pp. 3419-3426 ◽  
Author(s):  
Pyshar Yi ◽  
Robiatun A. Awang ◽  
Wayne S. T. Rowe ◽  
Kourosh Kalantar-zadeh ◽  
Khashayar Khoshmanesh

This work introduces a method to enhance the thermal conductivity of PDMS microfluidic platforms through the use of PDMS/Al2O3 nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document