Tribological Properties and Microstructure Evolution of Ultra-High Molecular Weight Polyethylene

1999 ◽  
Vol 121 (2) ◽  
pp. 394-402 ◽  
Author(s):  
C. Klapperich ◽  
K. Komvopoulos ◽  
L. Pruitt

The friction and wear properties of unmodified ultra-high molecular weight polyethylene (UHMWPE) were investigated experimentally. Dinks of semicrystalline UHMWPE were slid against polished CoCrWNi pins in bovine serum at ranges of contact pressure and sliding speed typical of those encountered in total joint replacements. The coefficient of friction was monitored continuously during testing, and the wear rate was determined from surface profilometry measurements of worn disk surfaces accounting for strain relaxation. Scanning electron microscopy (SEM) results demonstrated that surface deterioration comprises adhesion, third-body abrasion by polyethylene wear debris, and delamination wear. The contribution of these mechanisms to the overall wear rate and the formation of wear debris depends predominantly on the contact pressure and secondarily on the sliding speed. Transmission electron microscopy (TEM) yielded new insight into the evolution of the microstructure morphology of UHMWPE during sliding. Cross sections parallel to the wear tracks obtained from various depths were analyzed with the TEM to develop a spatial mapping of the subsurface microstructure as a function of contact pressure. Alignment of crystalline regions (lamellae) in the polyethylene microstructure parallel to the sliding surface was found to occur during sliding even at relatively low contact pressures. SEM observations suggested that the highly oriented microstructure is the precursor to delamination wear, leading to the formation of wear particles larger than those produced by adhesion and third-body abrasion at the contact interface.

Wear ◽  
2009 ◽  
Vol 266 (1-2) ◽  
pp. 349-355 ◽  
Author(s):  
Monika Lapcikova ◽  
Miroslav Slouf ◽  
Jiri Dybal ◽  
Eva Zolotarevova ◽  
Gustav Entlicher ◽  
...  

Author(s):  
J L Hailey ◽  
E Ingham ◽  
M Stone ◽  
B M Wroblewski ◽  
J Fisher

The objective of this study was to investigate the effect of counterface roughness and lubricant on the morphology of ultra-high molecular weight polyethylene (UHMWPE) wear debris generated in laboratory wear tests, and to compare this with debris isolated from explanted tissue. Laboratory tests used UHMWPE pins sliding against stainless steel counterfaces. Both water and serum lubricants were used in conjunction with rough and smooth counterfaces. The lubricants and tissue from revision hip surgery were processed to digest the proteins and permit filtration. This involved denaturing the proteins with potassium hydroxide (KOH), sedimentation of any remaining proteins, and further digestion of these proteins with chromic acid. All fractions were then passed through a 0.2 μm membrane, and the debris examined using scanning electron microscopy. The laboratory studies showed that the major variable influencing debris morphology was counterface roughness. The rougher counter-faces produced larger numbers of smaller particles, with a size range extending below 1 μm. For smooth counterfaces there were fewer of these small particles, and evidence of larger platelets, greater than 10 μm in diameter. Analysis of the debris from explanted tissues showed a wide variation in the particle size distribution, ranging from below 1 μm up to several millimetres in size. Of major clinical significance in relation to osteolysis and loosening is roughening of the femoral components, which may lead to greater numbers of the sub-micron-sized particles.


Author(s):  
Takuya NANBU ◽  
Tatsuki MATSUURA ◽  
Yoshitaka NAKANISHI ◽  
Mutsumi TOUGE ◽  
Hiroshi MIZUTA ◽  
...  

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiaocui Xin ◽  
Yunxia Wang ◽  
Zhaojie Meng ◽  
Hao Liu ◽  
Yunfeng Yan ◽  
...  

Purpose This paper aims to focus on studying the addition of nano-tungsten disulfide (WS2) on fretting wear performance of ultra-high-molecular-weight-polyethylene (UHMWPE). Design/methodology/approach In this study, the effect of WS2 content on fretting wear performance of UHMWPE was investigated. The fretting wear performance of the UHMWPE and WS2/UHMWPE nanocomposites were evaluated on oscillating reciprocating friction and wear tester. The data of the friction coefficient and the specific wear rate were obtained. The worn surfaces of composites were observed. The transfer film and its component were analyzed. Findings With the addition of 0.5% WS2, the friction coefficient and specific wear rate increased. With the content increased to 1% and 1.5%, the friction coefficient and specific wear rate decreased. The lowest friction coefficient and specific wear rate were obtained with the addition of 1.5% nano-WS2. Continuingly increasing content, the friction coefficient and wear rate increased but lower than that of pure UHMWPE. Research limitations/implications The research indicated the fretting wear performance related to the content of nano-WS2 with the incorporation of WS2 into UHMWPE. Practical implications The result may help to choose the appropriate content. Originality/value The main originality of the research is to reveal the fretting behavior of UHMWPE and WS2/UHMWPE nanocomposites. It makes us realize the nano-WS2 had an effect on the fretting wear performance of UHMWPE. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2020-0151/


2014 ◽  
Vol 66 (3) ◽  
pp. 498-504 ◽  
Author(s):  
Huseyin Unal ◽  
Salih Hakan Yetgin ◽  
Fehim Findik

Purpose – The purpose of the study was to find the best performance polymer material to be used in railway car bogies. Design/methodology/approach – Wear tests and optical and scanning electron microscopy were used. Findings – The friction coefficients of ultra-high-molecular-weight polyethylene (UHMWPE) and Nylon 6 polymers, as opposed to AISI 4140 steel, reduced with the increment of applied loads. With the increment of sliding speed, the friction coefficient increased in both UHMWPE and Nylon 6 polymers. The specific wear rate of the UHMWPE polymer was determined to be about 10-14 m2/N, whereas the rate of Nylon 6 was determined to be 10-13 m2/N. Practical implications – The aim of the study was to find the best performance polymer material to be used in railway car bogies. Originality/value – The friction and wear performance of UHMWPE and Nylon 6 engineering polymers were studied and compared to their AISI 4140 steel counterparts. It is an original work and it is not published in any media.


Sign in / Sign up

Export Citation Format

Share Document