Lubrication Model of an Artificial Hip Joint: Pressure Profile Versus Inclination Angle of the Acetabular Cup

1999 ◽  
Vol 121 (3) ◽  
pp. 492-498 ◽  
Author(s):  
Donna M. Meyer ◽  
John A. Tichy

Formulation of a three-dimensional, quasi-static lubrication model of an artificial hip joint is proposed which includes the inclination angle of the acetabular cup. This is performed by deriving a transformed Reynolds equation accounting for this cup tilt angle. The numerical simulation also addresses mass conservation at the location of film rupture. A 3-D spherical representation of the articulating surfaces of the hip prosthesis is mapped onto a cartesian coordinate system of the entire geometry of the “ball and socket” joint. Results include the lubricating fluid pressure distributions for various inclination angles of the acetabular cup demonstrating that the greatest pressures occur for large eccentricities in the upward vertical direction.

2008 ◽  
Vol 22 (09n11) ◽  
pp. 1789-1794
Author(s):  
Y. TANABE ◽  
T. UCHIYAMA ◽  
H. YAMAOKA ◽  
H. OHASHI

Since wear of the polyethylene (Ultra High Molecular Weight Polyethylene or UHMWPE) acetabular cup is considered to be the main cause of loosening of the artificial hip joint, the cross-linked UHMWPE with high durability to wear has been developed. This paper deals with impact load transmission through the complex of an artificial hip joint consisting of a UHMWPE acetabular cup (or liner), a metallic femoral head and stem. Impact compressive tests on the complex were performed using the split-Hopkinson pressure bar apparatus. To investigate the effects of material (conventional or cross-linked UHMWPE), size and setting angle of the liner, and test temperature on force transmission, the impact load transmission ratio (ILTR) was experimentally determined. The ILTR decreased with an increase of the setting angle independent of material and size of the liner, and test temperature. The ILTR values at 37°C were larger than those at 24 °C and 60°C. The ILTR also appeared to be affected by the type of material as well as size of the liner.


1999 ◽  
Author(s):  
Donna M. Meyer ◽  
John A. Tichy

Abstract The development of the hip prosthesis is a result of extensive collaboration between the medical and engineering fields. Although the technology to replace ailing human joints with artificial replicas is quite advanced, these remarkable advances require additional attention. In particular, extending the service life of a hip prosthesis is a primary consideration. An artificial hip joint may require revision surgery due to a number of contributions, one of which is extensive wear. Within the first few years following hip implantation, high amounts of wear particles form due to the contact of the articulating surfaces. The amounts of wear debris generated is a function of the material combinations of the rubbing surfaces of the joint, the amount of lubrication present in the joint during activity and the types and levels of activity.


2021 ◽  
Vol 328 ◽  
pp. 07014
Author(s):  
Wahyu Dwi Lestari ◽  
Luluk Edahwati ◽  
Wiliandi Saputro ◽  
Ahmad Khairul Faizin ◽  
Radissa Dzaky Issafira ◽  
...  

A common problem with artificial hip replacements is increased wear of the material in contact. Materials that are in contact result in contact pressure caused by the patient's daily activities so that it triggers wear. This study adopts a finite element method (FEM) to predict wear of the artificial hip joint, by studying the behavior of a hip joint prosthesis that has clearance under a certain load. The aim of this study was to observe contact as a function of clearance and body weight. The modeling uses metal as femoral head and polycarbonate urethane (PCU) material as the acetabular cup. Contact modeling as a hard material in contact with a deformable material. Four variations of clearance (0.001, 0.005, 0.01, 0.016) and three variations of body weight (500N, 700N, and 1000N) were used in this study. The simulation results show that the lower the distance and weight, the lower the contact pressure.


Sign in / Sign up

Export Citation Format

Share Document