An Operation Support System of Large City Gas Networks Based on Fluid Transient Model

1995 ◽  
Vol 117 (4) ◽  
pp. 324-328 ◽  
Author(s):  
T. Kiuchi ◽  
H. Izumi ◽  
T. Huke

This paper describes the essential features and experience of applying a fluid transient model to the operation support system of large city gas pipeline networks. The system, operating in the second largest city, Osaka, in Japan since 1992, includes the functions of a real-time leak detection and localization, a fast predictive computation of the pressure and flow distributions in networks, and an interactive training simulator using a transient model connected with SCADA training system. To achieve fast forecasting calculation in real-time manner, the combined method of a fully implicit transient calculation for high pressure transmission networks and a steady-state calculation for middle pressure distribution networks is developed. The actual performance of real-time leak detection and the accuracy of the forecasting model are discussed.

Author(s):  
Gerhard Geiger

Pipelines are the least expensive and most efficient way to move liquids and gases, but there is a high potential risk of danger in case of a leak. This paper therefore describes pipeline leak detection technologies and emergency shutdown protocols to ensure reliable and safe pipeline operations. The main focus of this paper is on internal leak detection systems which use existing field instrumentation and usually run continuously. External leak detection systems using dedicated measurement equipment such as probes and sensor cables are briefly considered. Particular emphasis will be placed on model-based techniques such as the Real Time Transient Model (RTTM) and Extended Real Time Transient Model (E-RTTM) methods. In case of a leak, appropriate emergency actions are required to limit the consequences and in particular to protect people and the environment. The last part of the paper therefore is devoted to emergency shut-down protocols.


Author(s):  
Joseph Jutras ◽  
Rick Barlow

MBS, the software based leak detection system employed by Enbridge, is a real time transient model and as such requires fluid characteristics of the various batches that enter the pipeline. In the past, of the 25 plus pipelines modeled, only 4 received fluid identifiers from the field. These fluid identifiers are a sub-string of the batch identifiers stored in flow computers located at custody transfer locations. On the remaining pipelines, Enbridge used fluid density from the field to infer fluid type and therefore characteristics. In the past whenever a number of fluids had the same density, MBS assigned a best-guess of fluid type. The ‘MBS Real Time Injection Batch Data’ project was proposed to bring fluid identifiers to MBS on the remaining lines with the purpose of improving MBS’ selection of fluid properties. Since injection points on the remaining lines were not custody transfer there were no flow computers at these locations. An existing application called Commodity Movement Tracking, or CMT, was used to provide fluid names to the leak detection model. CMT holds past, present, and future injection batch information in an Oracle database. Batch identifiers are queried, placed into the SCADA system, and forwarded on to MBS. This paper explores the new approach, introduced by the ‘MBS Real Time Injection Batch Data’ project, of providing MBS with batch identifiers.


Author(s):  
Joel Smith ◽  
Jaehee Chae ◽  
Shawn Learn ◽  
Ron Hugo ◽  
Simon Park

Demonstrating the ability to reliably detect pipeline ruptures is critical for pipeline operators as they seek to maintain the social license necessary to construct and upgrade their pipeline systems. Current leak detection systems range from very simple mass balances to highly complex models with real-time simulation and advanced statistical processing with the goal of detecting small leaks around 1% of the nominal flow rate. No matter how finely-tuned these systems are, however, they are invariably affected by noise and uncertainties in a pipeline system, resulting in false alarms that reduce system confidence. This study aims to develop a leak detection system that can detect leaks with high reliability by focusing on sudden-onset leaks of various sizes (ruptures), as opposed to slow leaks that develop over time. The expected outcome is that not only will pipeline operators avoid the costs associated with false-alarm shut downs, but more importantly, they will be able to respond faster and more confidently in the event of an actual rupture. To accomplish these goals, leaks of various sizes are simulated using a real-time transient model based on the method of characteristics. A novel leak detection model is presented that fuses together several different preprocessing techniques, including convolution neural networks. This leak detection system is expected to increase operator confidence in leak alarms, when they occur, and therefore decrease the amount of time between leak detection and pipeline shutdown.


Author(s):  
Morgan Henrie ◽  
Philip Carpenter ◽  
R. Edward Nicholas

2021 ◽  
Vol 16 (3) ◽  
pp. 395-402
Author(s):  
Yusuke Sakae ◽  
◽  
Masaya Endo ◽  
Yoshikazu Nakayama

This study was conducted to develop and evaluate the prediction accuracy and effectiveness of “ICT operation support system for urban flood control facilities,” which is installed in Eba catchment area in Hiroshima city, Japan. This system consists of real-time facilities monitoring technology, rainfall data from eXtended RAdar Information Network (XRAIN), and Real-time flood prediction technology. High prediction accuracy is crucial for effective control facility management using ICT operation support system. In this study, ICT operation support system was installed for effective operation of stormwater pump. The prediction accuracy and effectiveness of this system were evaluated based on the past rainfall record from XRAIN. The system takes only three minutes to distribute the urban flood prediction information, and it has been operated stably during the operation. Flood risk reduction effect can be better expected in case of central concentrated rainfall pattern.


Sign in / Sign up

Export Citation Format

Share Document