Theoretical Performance of a Solar Pond With Enhanced Ground Energy Storage

1996 ◽  
Vol 118 (2) ◽  
pp. 101-106 ◽  
Author(s):  
R. Prasad ◽  
D. P. Rao

A method was proposed earlier by the authors for the enhancement of energy storage in the ground beneath solar ponds employing the trapezoidal-shaped trenches at the bottom of the pond. The theoretical performance of the solar pond with trapezoidal trenches is presented for constant and variable energy extraction patterns. The results indicate that the trenches could be effective in reducing the thickness of lower convective layer and hence the salt requirement of the pond. However, the effectiveness of the trenches seems to be dependent on the energy extraction pattern. For the constant extraction pattern of 63.9 W m−2, it is found that 36.5 percent reduction in the salt requirement can be achieved with 3-m deep trenches compared to the flat-bottom pond. For the variable extraction pattern, the reduction was only 21.5 percent.

1984 ◽  
Vol 106 (4) ◽  
pp. 428-437 ◽  
Author(s):  
C. K. Cha ◽  
Y. Jaluria

An analytical and numerical study is carried out to determine the effect of buoyancy, resulting from temperature differences, on the recirculating flow arising in enclosed regions, such as the surface and storage layers of a salt-gradient solar pond, due to the discharge of fluid into it. The study investigates the time-dependent flow, considering an initially isothermal or thermally stratified fluid region, and the approach to the steady-state circumstance. Various flow configurations and boundary conditions, of particular relevance to energy extraction and heat rejection in solar ponds, are considered. The governing parameters, particularly the buoyancy parameter, are varied to determine the dependence of the flow field on these. Both laminar and turbulent flow are considered and numerical results are obtained for the velocity and temperature fields in the pond. Several interesting features are observed, particularly the strong effect of thermal buoyancy on the flow in the range of physical variables of practical interest and the effect of the flow on the growth and decay of a stable thermal stratification in the enclosed region. The effect of a periodic heat input into the region is studied. The study also considers relevant one-dimensional steady and transient analytical models for the thermal field and results are presented to indicate the range of validity of such simple models. The results obtained are also compared with earlier numerical and experimental studies of this flow circumstance and a fairly good agreement is observed. The relevance of the work to practical solar ponds is also outlined.


2021 ◽  
Author(s):  
Mervette El Batouti ◽  
H. A. Fetouh

New ferroelectric perovskite sample: excellent dielectric, negligible dielectric loss for energy storage systems such as solar cells, solar ponds, and thermal collectors has been prepared at low cost using nanotechnology.


2018 ◽  
Vol 64 ◽  
pp. 02002
Author(s):  
Sogukpinar Haci ◽  
Bozkurt Ismail ◽  
Cag Serkan

Solar ponds are heat storage systems where solar energy is collected and stored thermally. Solar ponds were discovered during the temperature variations in the lower regions of existing saltwater pond in the area is found to be higher than their surface. Later, it was constructed artificially and started to be used. These systems have heat storage capacity at moderate temperatures. Solar pons are used in many areas such as electricity generation, heating the environment, meeting the need of hot water, drying food and obtaining fresh water from salty water. In this study, the studies about solar ponds were summarized, the construction of solar pond was explained, and the application areas were examined.


2018 ◽  
Vol 877 ◽  
pp. 430-435 ◽  
Author(s):  
Dhandapani Sathish ◽  
M. Veeramanikandan ◽  
R. Thirunavukkarasu ◽  
R. Tamilselvan ◽  
T. Karthickmunisamy

Solar energy is being used in many ways, but the easiest to trap solar energy is solar pond. Solar Ponds absorb the solar energy and the absorbed solar energy will be taken away by a streaming fluid. A non-convective solar pond has been constructed to investigate the temperature variations of it, in the weather conditions of Pachapalayam, Coimbatore. Solar pond with a surface area of 1.7m2, a depth of 0.5m has been built-up and an inflexible surface is maintained at the bottom using a dark-colored (blackened) HDPE sheet, thermo styrene for capturing the heat in a good amount. Measurement of the temperature at depths of 0.05, 0.1. 0.2, 0.25, 0.3, 0.35, 0.4 0.45, m from the base of the pond and ambient temperature were taken using washer type thermocouples. Solar radiations were taken during a period of 10 days of experimentation using a solar power meter. In this experimental work investigated the performance of solar pond with NaCl salt and coal cinder


2015 ◽  
Vol 1113 ◽  
pp. 800-805 ◽  
Author(s):  
Baljit Singh ◽  
Muhammad Fairuz Remeli ◽  
Alex Pedemont ◽  
Amandeep Oberoi ◽  
Abhijit Date ◽  
...  

This paper investigates the capability of running a system which uses hot fluid from solar evacuated tube collectors to boost the temperature and overall heat storage of the solar pond. The system is circulated by a solar powered pump, producing heat energy entirely from the incoming solar radiation from the sun. Solar evacuated tube collectors use a renewable source of power directly from the sun to heat the working fluid to very high temperatures. Solar ponds are emerging on the renewable energy scene with the capacity to provide a simple and inexpensive thermal storage for the production of heat on a large scale. The results of the performance of the system show a significant heat energy increase into the solar ponds lower convective region, increasing the overall performance of the solar pond.


2010 ◽  
Vol 42 ◽  
pp. 294-298
Author(s):  
Hua Wang ◽  
Jun Li Liu ◽  
Jia Ning Zou

In this study, adding coal cinder to bottom of solar pond as a means of increasing temperature of the solar pond is presented. A series of small-scale tests are conducted in the simple mini solar ponds. These small-scale tests include the temperature evolution comparisons of this mode with other normal modes; the comparisons of the material added to LCZ and the comparisons of the different soaking times for coal cinder. In addition, a numerical calculation on predicting temperature evolution in large area of salt gradient solar pond is also given. Both of the experimental and numerical results suggest that adding porous media with low thermal diffusivity (e.g. coal cinder) could significantly increase the temperature in the vicinity of the bottom of the pond. From the view of long-term, this effect is supposed to enhance the average temperature of the solar pond.


1998 ◽  
Vol 39 (7) ◽  
pp. 559-566 ◽  
Author(s):  
K. Al-Jamal ◽  
S. Khashan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document