Photogrammetry: An Available Surface Characterization Tool for Solar Concentrators, Part II: Assessment of Surfaces

1997 ◽  
Vol 119 (4) ◽  
pp. 286-291 ◽  
Author(s):  
M. Shortis ◽  
G. Johnston

In a previous paper, the results of photogrammetric measurements of a number of paraboloidal reflecting surfaces were presented. These results showed that photogrammetry can provide three-dimensional surface characterisations of such solar concentrators. The present paper describes the assessment of the quality of these surfaces as a derivation of the photogrammetrically produced surface coordinates. Statistical analysis of the z-coordinate distribution of errors indicates that these generally conform to a univariate Gaussian distribution, while the numerical assessment of the surface normal vectors on these surfaces indicates that the surface normal deviations appear to follow an approximately bivariate Gaussian distribution. Ray tracing of the measured surfaces to predict the expected flux distribution at the focal point of the 400 m2 dish show a close correlation with the videographically measured flux distribution at the focal point of the dish.

1996 ◽  
Vol 118 (3) ◽  
pp. 146-150 ◽  
Author(s):  
M. R. Shortis ◽  
G. H. G. Johnston

Close range photogrammetry is a sensing technique that allows the three-dimensional coordinates of selected points on a surface of almost any dimension and orientation to be assessed. Surface characterisations of paraboloidal reflecting surfaces at the ANU using photogrammetry have indicated that three-dimensional coordinate precisions approaching 1:20,000 are readily achievable using this technique. This allows surface quality assessments to be made of large solar collecting devices with a precision that is difficult to achieve with other methods.


Author(s):  
Demeng Che ◽  
Jacob Smith ◽  
Kornel F. Ehmann

The unceasing improvements of polycrystalline diamond compact (PDC) cutters have pushed the limits of tool life and cutting efficiency in the oil and gas drilling industry. However, the still limited understanding of the cutting mechanics involved in rock cutting/drilling processes leads to unsatisfactory performance in the drilling of hard/abrasive rock formations. The Finite Element Method (FEM) holds the promise to advance the in-depth understanding of the interactions between rock and cutters. This paper presents a finite element (FE) model of three-dimensional face turning of rock representing one of the most frequent testing methods in the PDC cutter industry. The pressure-dependent Drucker-Prager plastic model with a plastic damage law was utilized to describe the elastic-plastic failure behavior of rock. A newly developed face turning testbed was introduced and utilized to provide experimental results for the calibration and validation of the formulated FE model. Force responses were compared between simulations and experiments. The relationship between process parameters and force responses and the mechanics of the process were discussed and a close correlation between numerical and experimental results was shown.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Stephen T. McClain ◽  
Jason M. Brown

The discrete-element model for flows over rough surfaces was recently modified to predict drag and heat transfer for flow over randomly rough surfaces. However, the current form of the discrete-element model requires a blockage fraction and a roughness-element diameter distribution as a function of height to predict the drag and heat transfer of flow over a randomly rough surface. The requirement for a roughness-element diameter distribution at each height from the reference elevation has hindered the usefulness of the discrete-element model and inhibited its incorporation into a computational fluid dynamics (CFD) solver. To incorporate the discrete-element model into a CFD solver and to enable the discrete-element model to become a more useful engineering tool, the randomly rough surface characterization must be simplified. Methods for determining characteristic diameters for drag and heat transfer using complete three-dimensional surface measurements are presented. Drag and heat transfer predictions made using the model simplifications are compared to predictions made using the complete surface characterization and to experimental measurements for two randomly rough surfaces. Methods to use statistical surface information, as opposed to the complete three-dimensional surface measurements, to evaluate the characteristic dimensions of the roughness are also explored.


1993 ◽  
Vol 63 (14) ◽  
pp. 1883-1885 ◽  
Author(s):  
Ray T. Chen ◽  
Suning Tang ◽  
Maggie M. Li ◽  
David Gerald ◽  
Srikanth Natarajan

1999 ◽  
Vol 391 ◽  
pp. 249-292 ◽  
Author(s):  
ALEXANDER Z. ZINCHENKO ◽  
MICHAEL A. ROTHER ◽  
ROBERT H. DAVIS

A three-dimensional boundary-integral algorithm for interacting deformable drops in Stokes flow is developed. The algorithm is applicable to very large deformations and extreme cases, including cusped interfaces and drops closely approaching breakup. A new, curvatureless boundary-integral formulation is used, containing only the normal vectors, which are usually much less sensitive than is the curvature to discretization errors. A proper regularization makes the method applicable to small surface separations and arbitrary λ, where λ is the ratio of the viscosities of the drop and medium. The curvatureless form eliminates the difficulty with the concentrated capillary force inherent in two-dimensional cusps and allows simulation of three-dimensional drop/bubble motions with point and line singularities, while the conventional form can only handle point singularities. A combination of the curvatureless form and a special, passive technique for adaptive mesh stabilization allows three-dimensional simulations for high aspect ratio drops closely approaching breakup, using highly stretched triangulations with fixed topology. The code is applied to study relative motion of two bubbles or drops under gravity for moderately high Bond numbers [Bscr ], when cusping and breakup are typical. The deformation-induced capture efficiency of bubbles and low-viscosity drops is calculated and found to be in reasonable agreement with available experiments of Manga & Stone (1993, 1995b). Three-dimensional breakup of the smaller drop due to the interaction with a larger one for λ=O(1) is also considered, and the algorithm is shown to accurately simulate both the primary breakup moment and the volume partition by extrapolation for moderately supercritical conditions. Calculations of the breakup efficiency suggest that breakup due to interactions is significant in a sedimenting emulsion with narrow size distribution at λ=O(1) and [Bscr ][ges ]5–10. A combined capture and breakup phenomenon, when the smaller drop starts breaking without being released from the dimple formed on the larger one, is also observed in the simulations. A general classification of possible modes of two-drop interactions for λ=O(1) is made.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3706 ◽  
Author(s):  
Joong-Jae Lee ◽  
Mun-Ho Jeong

This paper presents a stereo camera-based head-eye calibration method that aims to find the globally optimal transformation between a robot’s head and its eye. This method is highly intuitive and simple, so it can be used in a vision system for humanoid robots without any complex procedures. To achieve this, we introduce an extended minimum variance approach for head-eye calibration using surface normal vectors instead of 3D point sets. The presented method considers both positional and orientational error variances between visual measurements and kinematic data in head-eye calibration. Experiments using both synthetic and real data show the accuracy and efficiency of the proposed method.


2022 ◽  
Author(s):  
Shuyu Dai ◽  
Defeng Kong ◽  
Vincent Chan ◽  
Liang Wang ◽  
Yuhe Feng ◽  
...  

Abstract The numerical modelling of the heat flux distribution with neon impurity seeding on CFETR has been performed by the three-dimensional (3D) edge transport code EMC3-EIRENE. The maximum heat flux on divertor targets is about 18 MW m-2 without impurity seeding under the input power of 200 MW entering into the scrape-off layer. In order to mitigate the heat loads below 10 MW m-2, neon impurity seeded at different poloidal positions has been investigated to understand the properties of impurity concentration and heat load distributions for a single toroidal injection location. The majority of the studied neon injections gives rise to a toroidally asymmetric profile of heat load deposition on the in- or out-board divertor targets. The heat loads cannot be reduced below 10 MW m-2 along the whole torus for a single toroidal injection location. In order to achieve the heat load mitigation (<10 MW m-2) along the entire torus, modelling of sole and simultaneous multi-toroidal neon injections near the in- and out-board strike points has been stimulated, which indicates that the simultaneous multi-toroidal neon injections show a better heat flux mitigation on both in- and out-board divertor targets. The maximum heat flux can be reduced below 7 MWm-2 on divertor targets for the studied scenarios of the simultaneous multi-toroidal neon injections.


Author(s):  
Stephen T. McClain ◽  
Jason M. Brown

The discrete-element model for flows over rough surfaces was recently modified to predict drag and heat transfer for flow over randomly-rough surfaces. However, the current form of the discrete-element model requires a blockage fraction and a roughness-element diameter distribution as a function of height to predict the drag and heat transfer of flow over a randomly-rough surface. The requirement for a roughness element-diameter distribution at each height from the reference elevation has hindered the usefulness of the discrete-element model and inhibited its incorporation into a computational fluid dynamics (CFD) solver. To incorporate the discrete-element model into a CFD solver and to enable the discrete-element model to become a more useful engineering tool, the randomly-rough surface characterization must be simplified. Methods for determining characteristic diameters for drag and heat transfer using complete three-dimensional surface measurements are presented. Drag and heat transfer predictions made using the model simplifications are compared to predictions made using the complete surface characterization and to experimental measurements for two randomly-rough surfaces. Methods to use statistical surface information, as opposed to the complete three-dimensional surface measurements, to evaluate the characteristic dimensions of the roughness are also explored.


Sign in / Sign up

Export Citation Format

Share Document