Localized and Non-Localized Nonlinear Normal Modes in a Multi-Span Beam With Geometric Nonlinearities

1996 ◽  
Vol 118 (4) ◽  
pp. 533-542 ◽  
Author(s):  
J. Aubrecht ◽  
A. F. Vakakis

The nonlinear normal modes of a geometrically nonlinear multi-span beam consisting of n segments, coupled by means of torsional stiffeners are examined. Assuming that the stiffeners possess large torsional stiffness, the beam displacements are decomposed into static and flexible components. It is shown that the static components are much smaller in magnitude than the flexible ones. A Galerkin approximation is subsequently employed to discretize the problem, whereby the computation of the nonlinear normal modes of the multi-span beam is reduced to the study of the periodic solutions of a set of weakly coupled, weakly nonlinear ordinary differential equations. Numerous stable and unstable, localized and non-localized nonlinear normal modes of the multi-span beam are detected. Assemblies consisting of n = 2, 3, and 4 beam segments are examined, and are found to possess stable, strongly localized nonlinear normal modes. These are free synchronous oscillations during which only one segment of the assembly vibrates with finite amplitude. As the number of periodic segments increases, the structure of the nonlinear normal modes becomes increasingly more complicated. In the multi-span beams examined, nonlinear mode localization is generated through two distinct mechanisms: through Pitchfork or Saddle-node mode bifurcations, or as the limit of a continuous mode branch when a coupling parameter tends to zero.

Author(s):  
O. V. Gendelman

We study the degenerate bifurcations of the nonlinear normal modes (NNMs) of an unforced system consisting of a linear oscillator weakly coupled to an essentially nonlinear one. Both the potential of the oscillator and of the coupling spring are adopted to be even-power polynomials with nonnegative coefficients. By defining the coupling parameter ε, the dynamics of this system at the limit ε → 0 and for finite ε is investigated. Bifurcation scenario of the nonlinear normal modes is revealed. The degeneracy in the dynamics is manifested by a ‘bifurcation from infinity’ where a saddle-node bifurcation point is generated at high energies, as perturbation of a state of infinite energy. Another (nondegenerate) saddle-node bifurcation points (at least one point) are generated in the vicinity of the point of exact 1:1 internal resonance between the linear and nonlinear oscillators. The above bifurcations form multiple-branch structure with few stable and unstable branches. This structure may disappear (for certain choices of the oscillator and coupling potentials) by mechanism of successive cusp catastrophes with growth of the coupling parameter ε. The above analytical findings are verified by means of direct numerical simulation (conservative Poincare sections). For particular case of pure cubic nonlinearity of the oscillator and the coupling spring good agreement between quantitative analytical predictions and numerical results is observed.


2006 ◽  
Vol 16 (01) ◽  
pp. 169-178 ◽  
Author(s):  
O. V. GENDELMAN

We study the degenerate bifurcations of nonlinear normal modes (NNMs) of an unforced system consisting of a linear oscillator weakly coupled to an essentially nonlinear one. The potentials of both the oscillator and the coupling spring are adopted to be even-power polynomials with non-negative coefficients. Coupling parameter ε is defined and the bifurcations of the nonlinear normal modes structure with change of this coupling parameter are revealed. The degeneracy in the dynamics is manifested by a "bifurcation from infinity" where a saddle-node bifurcation point is generated at high energies, as perturbation of a state of infinite energy. Other (nondegenerate) saddle-node bifurcation points (at least one point) are generated in the vicinity of the point of exact 1 : 1 internal resonance between the linear and nonlinear oscillators. The above bifurcations form multiple-branch structure with few stable and unstable branches. This structure may disappear (for certain choices of the oscillator and coupling potentials) by the mechanism of successive cusp catastrophes with the growth of coupling parameter ε. The above analytical findings are verified by means of direct numerical simulation (conservative Poincaré sections). In the particular case of pure cubic nonlinearity of the oscillator and the coupling spring, an agreement between quantitative analytical predictions and numerical results is observed.


Author(s):  
Alexander F. Vakakis

Abstract The free oscillations of a strongly nonlinear, discrete oscillator are examined by computing its “nonsimilar nonlinear normal modes.” These are motions represented by curves in the configuration space of the system, and they are not encountered in classical, linear vibration theory or in existing nonlinear perturbation techniques. For an oscillator with weak coupling stiffness and “mistiming,” both localized and nonlocalized modes are detected, occurring in small neighborhoods of “degenerate” and “global” similar modes of the “tuned” system. When strong coupling is considered, only nonlocalized modes are found to exist. An interesting result of this work is the detection of mode localization in the “tuned” periodic system, a result with no counterpart in existing theories on linear mode localization.


Author(s):  
Alexander F. Vakakis ◽  
Richard H. Rand

We study the resonant dynamics of a two-degree-of-freedom system composed a linear oscillator weakly coupled to a strongly nonlinear one, with an essential (nonlinearizable) cubic stiffness nonlinearity. For the undamped system this leads to a series of internal resonances, depending on the level of (conserved) total energy of oscillation. We study in detail the 1:1 internal resonance, and show that the undamped system possesses stable and unstable synchronous periodic motions (nonlinear normal modes — NNMs), as well as, asynchronous periodic motions (elliptic orbits — EOs). Furthermore, we show that when damping is introduced certain NNMs produce resonance capture phenomena, where a trajectory of the damped dynamics gets ‘captured’ in the neighborhood of a damped NNM before ‘escaping’ and becoming an oscillation with exponentially decaying amplitude. In turn, these resonance captures may lead to passive nonlinear energy pumping phenomena from the linear to the nonlinear oscillator. Thus, sustained resonance capture appears to provide a dynamical mechanism for passively transferring energy from one part of the system to another, in a one-way, irreversible fashion. Numerical integrations confirm the analytical predictions.


Author(s):  
Yohta Kunitoh ◽  
Hiroshi Yabuno ◽  
Tsuyoshi Inoue ◽  
Yukio Ishida

Mode localizations in a weakly coupled two-span rotor system are theoretically and experimentally discussed. One rotor has a slight unbalance and the other one is well-assembled. First, the equations governing the whirling motions of the coupled rotors are expressed due to nonlinearity in each span and the weakness of the coupling. The averaged equations are obtained by the method of multiple scales and it is shown that the nonlinear normal modes are bifurcated from the linear normal modes. It results from this bifurcation that the number of nonlinear normal modes exceeds the equivalent degree of freedom of the two-span rotor system, i.e., 2-degree under the assumption that the trajectory of the whirling motion is circle. Also, it is theoretically clarified that whirling motion caused by the unbalance in the rotor is localized in the rotor with unbalance or in one without unbalance depending on the rotational speed. Furthermore, these mode localizations are experimentally confirmed.


1996 ◽  
Vol 118 (3) ◽  
pp. 340-345 ◽  
Author(s):  
A. H. Nayfeh ◽  
C. Chin ◽  
S. A. Nayfeh

A complex-variable invariant-manifold approach is used to construct the normal modes of weakly nonlinear discrete systems with cubic geometric nonlinearities and either a one-to-one or a three-to-one internal resonance. The nonlinear mode shapes are assumed to be slightly curved four-dimensional manifolds tangent to the linear eigenspaces of the two modes involved in the internal resonance at the equilibrium position. The dynamics on these manifolds is governed by three first-order autonomous equations. In contrast with the case of no internal resonance, the number of nonlinear normal modes may be more than the number of linear normal modes. Bifurcations of the calculated nonlinear normal modes are investigated.


Author(s):  
Melvin E. King ◽  
Alexander F. Vakakis

Abstract In this work, modifications to existing energy-based nonlinear normal mode (NNM) methodologies are developed in order to investigate internal resonances. A formulation for computing resonant NNMs is developed for discrete, or discretized for continuous systems, sets of weakly nonlinear equations with uncoupled linear terms (i.e systems in modal, or canonical, form). By considering a canonical framework, internal resonance conditions are immediately recognized by identifying commensurable linearized natural frequencies. Additionally, the canonical formulation allows for a single (linearized modal) coordinate to parameterize all other (modal) coordinates during a resonant modal response. Energy-based NNM methodologies are then applied to the canonical equations and asymptotic solutions are sought. In order to account for the resonant modal interactions, it will be shown that high-order terms in the O(1) solutions must be considered. Two applications (‘3:1’ resonances in a two-degree-of-freedom system and ‘3:1’ resonance in a hinged-clamped beam) are then considered by which to demonstrate the application of the resonant NNM methodology. Resonant normal mode solutions are obtained and the stability characteristics of these computed modes are considered. It is shown that for some responses, nonlinear modal relations do not exist in the context of physical coordinates and thus the transformation to canonical coordinates is necessary in order to define appropriate NNM relations.


2011 ◽  
Vol 21 (10) ◽  
pp. 2919-2928
Author(s):  
E. L. MANEVITCH ◽  
L. I. MANEVITCH

The concept of limiting phase trajectories (LPT) has been introduced by one of the authors to describe intensive energy exchange between weakly coupled oscillators or oscillatory chains. It turns out that LPT can be considered as an alternative to nonlinear normal modes (NNMs), which are characterized by conservation of energy. LPT (in the introduced coordinates) describes the vibroimpact-type process with saw-tooth amplitude and a discontinuous derivative. It was shown earlier that this concept could also be extended to systems with one degree of freedom (DoF). In this case energy exchange between the oscillator and the source of energy can occur. In this paper, we generalize the above results in several ways, namely: (1) a consideration of the asymmetry of elastic potential; (2) a detailed description of the origin of vibroimpact-type behavior and the transition from nonresonant nonstationary oscillations to resonant ones (3) a direct application of obtained results to transient vibrations in strongly asymmetric 2DoF systems.


Sign in / Sign up

Export Citation Format

Share Document