The Use of Wave-Absorbing Elements for the Evaluation of Transmission Characteristics of Beam Junctions

1997 ◽  
Vol 119 (3) ◽  
pp. 293-303 ◽  
Author(s):  
K. De Langhe ◽  
P. Sas ◽  
D. Vandepitte

The following paper addresses the applicability and the advantages of finite elements for the study of transmission and reflection of waves impinging upon beam junctions. It will be shown that it is possible to simulate travelling waves on general beams by using a wave-absorbing element at each end of the beam. The stiffness matrix of the wave-absorbing element is determined by the characteristic stiffness of the beam. A general procedure to identify the characteristic stiffness is given in the appendix. Next, by performing a direct frequency response analysis on the finite element model of the junction (including the wave-absorbing elements at either end), it is possible to calculate the energy absorbed by the wave-absorbing elements. Along with some additional calculations, one can easily deduce the energy transmission characteristics of the junction. The method will be explained in detail in the case of beam junction. The applicability, which is mainly situated in the higher frequency dynamic range, will be highlighted through some relevant examples. One of the main advantages of using finite elements is the possibility of evaluating the transmission characteristics of whatever junction, including all essential geometrical details, in a straightforward way.

2000 ◽  
Vol 37 (03) ◽  
pp. 117-128
Author(s):  
T. V. S. R. Appa Rao ◽  
Nagesh R. Iyer ◽  
J. Rajasankar ◽  
G. S. Palani

Finite-element modeling and use of appropriate analytical techniques play a significant role in producing a reliable and economic design for ship hull structures subjected to dynamic loading. The paper presents investigations carried out for the dynamic response analysis of ship hull structures using the finite-element method. A simple and efficient interactive graphical preprocessing technique based on the "keynode" concept and assembly-line procedure is used to develop the finite-element model of the hull structure. The technique makes use of the body plan of a ship hull to build the finite-element model through an interactive session. Stiffened plate/shell finite elements suitable to model the hull structure are formulated and used to model the structure. The finite elements take into account arbitrary placement of stiffeners in an element without increasing the number of degrees-of-freedom of the element. A three-dimensional finite-element model and a procedure based on the Bubnov-Galerkin residual approach are employed to evaluate the effects of interaction between the ship hull and water. Mode superposition technique is used to conduct the dynamic response analysis. The efficiency of the finite elements and the procedures is demonstrated through dynamic analysis of a submerged cantilever plate and a barge when both are subjected to sinusoidal forces. The dynamic responses exhibit expected behavior of the structure and a comparison with the results available in the literature indicate superior performance of the finite element and methodologies developed. Thus, the finite-element models and the procedures are found to be efficient and hence suitable for the dynamic analysis of similar structures.


2013 ◽  
Vol 811 ◽  
pp. 228-233
Author(s):  
Yang Yang ◽  
Yuan Ying Qiu ◽  
Gai Juan Wang

The response analysis of a large cable net bearing wind load is conducted by the nonlinear finite element method. First, the form-finding calculation of the cable net structure is carried out to find an equilibrium state which can make the pretensions and sags of the wires meet the given requirements. Then the static analyses of the finite element model of the cable net structure under different wind loads are conducted to assess whether the cable net structure meets the requirements for strength. The work of this paper establishes the foundation for the design of a large cable antenna.


2012 ◽  
Vol 503-504 ◽  
pp. 11-14
Author(s):  
Yan Jun Zhao ◽  
Xin Jun Li ◽  
Yong Hai Wu ◽  
Cheng Xu

Thermal is a important factor that affect weapon firing accuracy and security in the process of weapon fire, so thermal analysis of weapon has important meaning . Aim at researched Weapon, the finite element model of the gun body was built, the temperature field of the gun body was calculated by FEM. The effects of temperature of the gun body on firer and aiming mechanism were also studied. Current research work will be helpful the weapon design


2013 ◽  
Vol 798-799 ◽  
pp. 341-344
Author(s):  
Run Lian Jiang ◽  
Yao Hua Wang ◽  
Cheng Fei Fan ◽  
Mian Jun Duan

The finite element model of an aircraft hydraulic pipe was established in this paper. Based on LS-Dyna software equivalent static pressure and peak pressure surface loads on the tire burst test (main landing gear retracted state, and did not consider the impact of tire debris) jets were applied to the hydraulic pipe. Both stress and strain contours of hydraulic pipe were obtained under dynamic loading. Plastic strain occurred under both loads on the hydraulic pipe, and the peak pulse loads were more severe than equivalent static loads, the maximum strain reached 0.41172 under the peak pulse loads. However, in both cases the pipe is not broken.


2010 ◽  
Vol 156-157 ◽  
pp. 1360-1365
Author(s):  
Qiu Lin Pu ◽  
Xiao Diao Huang ◽  
Wen Zheng Ding

In this paper,the ball screw feeding system’s dynamic characteristics of a numerical remanufacture grinding machine is analyzed using the FEM. Discusses the modeling method of ball screw system into the finite element model and established the combination of finite element model. Through the modal analysis and the harmonious response analysis, the nature frequency and vibration mode of the feeding system and typical operating conditions of excitation in the harmonic responsehave have been gotten,thus the dependable basis for the construction’s optimization and dynamic function’s increasing of the feeding system is provided, ensure the numerical remanufacture will be success.


1997 ◽  
Vol 67 (4) ◽  
pp. 263-268 ◽  
Author(s):  
Lieva Van Langenhove

A theoretical model is established to predict stress-strain and torque-tensile strain curves of a yarn. The yarn is described by its properties and the arrangement of its fibers, which have a finite length. The yarn is transformed into finite elements. Equilibrium is expressed by virtual work, and is calculated iteratively using the dynamic relaxation technique. The principles of the model, its potential, limitations, and possible improvements are discussed.


2014 ◽  
Vol 680 ◽  
pp. 258-262
Author(s):  
De Lin Sun ◽  
Zhe Zhao ◽  
Kun He ◽  
Ri Dong Liao

To assess the structural strength of spherical cylinder, the finite element model was constructed by the NX NASTRAN software. Firstly,the basic principle of random vibration response analysis was introduced, then the random vibration response analysis of the cylinder assembly was analyzed. The simulation result shows that the stress of the joint between spherical cylinder clamp and the base is larger than other areas in conditions of a given random vibration load. The spherical cylinder structure is safe and that the maximum RMS stress is about 20 MPa.


2011 ◽  
Vol 90-93 ◽  
pp. 1522-1525
Author(s):  
Ling Ling Yu

The current problems on damping in seismic response analysis of bridges is presented. The Rayleigh damping theory is simply introduced in this paper. Taking the Longtan River Bridge for instance, the finite element model of Longtan River Bridge (left line) is established. Then, the dynamic properties of the bridge is analyzed. Based on this, the Rayleigh damping constants and in an ANSYS dynamic analysis are obtained.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012046
Author(s):  
Xiancai Ren ◽  
Zhaobo Meng ◽  
Xin Wang ◽  
Feifei Gao ◽  
Ting Zhang

Abstract In order to study the seismic performance of ancient wooden structures with single eaves and beam lifting in China, the finite element model of the upper floor of the south gate of Jiangzhang town in Shanxi Province was established by using ANSYS. Through modal analysis, the main frequencies and modes of the south gate of Jiangduan were obtained. Through the seismic response analysis of the south gate tower model, the displacement and acceleration response curves of the top nodes of the outer eaves column, golden column and through column under various working conditions of the South gate tower are obtained. The results show that the first and second order frequencies of the South Gate tower model are 1.830Hz and 1.855Hz, and the first two order modes are mainly transitional. With the increase of seismic excitation, the displacement and acceleration response of the top joints of the outer eave column, golden column and through column increase.


Author(s):  
Yi Zhou ◽  
Dong-hui Lin ◽  
Hai Zhou ◽  
Jun-wei Zhang ◽  
Shi-long Wang

This paper analyze the deformation of large aperture optical components under the thermal load based on the finite element model developed using the ANSYS software, which are used for inertia confinement fusion (ICF) experiments. High precision sensors are used to measure the temperature around the optical components in the target building and to form the temperature changing curve. The biggest temperature change is 0.3°C during 2 hours based on the measurement. The change is then loaded on the finite element model of a typical large aperture optical component to get the deformation of the optical component. The results indicate that the deformation of the optical component can satisfy the stability requirement in the current environment. Meanwhile, the deformation of the optical component is calculated for different temperature changes and the results show that the deformation of the optical component have a direct relationship with the change of temperature.


Sign in / Sign up

Export Citation Format

Share Document