A Parametric Study of the Modified Model Reference Adaptive Control Scheme

1998 ◽  
Vol 120 (3) ◽  
pp. 814-821
Author(s):  
H. M. Sardar ◽  
M. Ahmadian

The validity of the claim by many studies that the damping and stiffness forces can be ignored when designing a model reference adaptive controller, is examined. For a simple plant, the sensitivity of the closed loop system to the inertial, damping, and stiffness nonlinearities are investigated, through a simulation analysis. It is shown that the closed loop system is sensitive to the changes in the inertial nonlinearities, and relatively insensitive to variations in the damping and stiffness forces. This supports the assumption made in many previous studies.

2005 ◽  
Vol 128 (2) ◽  
pp. 414-421 ◽  
Author(s):  
A. Ibeas ◽  
M. de la Sen

A multiestimation-based robust adaptive controller is designed for robotic manipulators. The control scheme is composed of a set of estimation algorithms running in parallel along with a supervisory index proposed with the aim of evaluating the identification performance of each one. Then, a higher-order level supervision algorithm decides in real time the estimator that will parametrize the adaptive controller at each time instant according to the values of the above supervisory indexes. There exists a minimum residence time between switches in such a way that the closed-loop system stability is guaranteed. It is verified through simulations that multiestimation-based schemes can improve the transient response of adaptive systems as well as the closed-loop behavior when a sudden change in the parameters or in the reference input occurs by appropriate switching between the various estimation schemes running in parallel. The closed-loop system is proved to be robustly stable under the influence of uncertainties due to a poor modeling of the robotic manipulator. Finally, the usefulness of the proposed scheme is highlighted by some simulation examples.


Author(s):  
Yohan Darcy Mfoumboulou

This paper describes the design of an adaptive controller based on model reference adaptive PID control (MRAPIDC) to stabilize a two-tank process when large variations of parameters and external disturbances affect the closed-loop system. To achieve that, an innovative structure of the adaptive PID controller is defined, an additional PI is designed to make sure that the reference model produces stable output signals and three adaptive gains are included to guarantee stability and robustness of the closed-loop system. Then, the performance of the model reference adaptive PID controller on the behaviour of the closed-loop system is compared to a PI controller designed on MATLAB when both closed-loop systems are under various conditions. The results demonstrate that the MRAPIDC performs significantly better than the conventional PI controller.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jinsheng Xing ◽  
Naizheng Shi

This paper proposes a stable adaptive fuzzy control scheme for a class of nonlinear systems with multiple inputs. The multiple inputs T-S fuzzy bilinear model is established to represent the unknown complex systems. A parallel distributed compensation (PDC) method is utilized to design the fuzzy controller without considering the error due to fuzzy modelling and the sufficient conditions of the closed-loop system stability with respect to decay rateαare derived by linear matrix inequalities (LMIs). Then the errors caused by fuzzy modelling are considered and the method of adaptive control is used to reduce the effect of the modelling errors, and dynamic performance of the closed-loop system is improved. By Lyapunov stability criterion, the resulting closed-loop system is proved to be asymptotically stable. The main contribution is to deal with the differences between the T-S fuzzy bilinear model and the real system; a global asymptotically stable adaptive control scheme is presented for real complex systems. Finally, illustrative examples are provided to demonstrate the effectiveness of the results proposed in this paper.


2018 ◽  
Vol 41 (5) ◽  
pp. 1266-1277 ◽  
Author(s):  
Kun Yan ◽  
Mou Chen ◽  
Qiangxian Wu ◽  
Ke Lu

In this paper, an adaptive robust fault-tolerant control scheme is developed for attitude tracking control of a medium-scale unmanned autonomous helicopter with rotor flapping dynamics, external unknown disturbances and actuator faults. For the convenience of control design, the actuator dynamics with respect to the tail rotor are introduced. The adaptive fault observer and robust item are employed to observe the actuator faults and eliminate the effect of external disturbances, respectively. A backstepping-based robust fault-tolerant control scheme is designed with the aim of obtaining satisfactory tracking performance and closed-loop system stability is proved via Lyapunov analysis, which guarantees the convergence of all closed-loop system signals. Simulation results are given to show the effectiveness of the proposed control method.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Asan Mohideen Khansadurai ◽  
Valarmathi Krishnasamy ◽  
Radhakrishnan Thota Karunakaran

The main objective of the paper is to design a model reference adaptive controller (MRAC) with improved transient performance. A modification to the standard direct MRAC called fuzzy modified MRAC (FMRAC) is used in the paper. The FMRAC uses a proportional control based Mamdani-type fuzzy logic controller (MFLC) to improve the transient performance of a direct MRAC. The paper proposes the application of real-coded genetic algorithm (RGA) to tune the membership function parameters of the proposed FMRAC offline so that the transient performance of the FMRAC is improved further. In this study, a GA based modified MRAC (GAMMRAC), an FMRAC, and a GA based FMRAC (GAFMRAC) are designed for a coupled tank setup in a hybrid tank process and their transient performances are compared. The results show that the proposed GAFMRAC gives a better transient performance than the GAMMRAC or the FMRAC. It is concluded that the proposed controller can be used to obtain very good transient performance for the control of nonlinear processes.


Sign in / Sign up

Export Citation Format

Share Document