Robust attitude fault-tolerant control for unmanned autonomous helicopter with flapping dynamics and actuator faults

2018 ◽  
Vol 41 (5) ◽  
pp. 1266-1277 ◽  
Author(s):  
Kun Yan ◽  
Mou Chen ◽  
Qiangxian Wu ◽  
Ke Lu

In this paper, an adaptive robust fault-tolerant control scheme is developed for attitude tracking control of a medium-scale unmanned autonomous helicopter with rotor flapping dynamics, external unknown disturbances and actuator faults. For the convenience of control design, the actuator dynamics with respect to the tail rotor are introduced. The adaptive fault observer and robust item are employed to observe the actuator faults and eliminate the effect of external disturbances, respectively. A backstepping-based robust fault-tolerant control scheme is designed with the aim of obtaining satisfactory tracking performance and closed-loop system stability is proved via Lyapunov analysis, which guarantees the convergence of all closed-loop system signals. Simulation results are given to show the effectiveness of the proposed control method.

2005 ◽  
Vol 128 (2) ◽  
pp. 414-421 ◽  
Author(s):  
A. Ibeas ◽  
M. de la Sen

A multiestimation-based robust adaptive controller is designed for robotic manipulators. The control scheme is composed of a set of estimation algorithms running in parallel along with a supervisory index proposed with the aim of evaluating the identification performance of each one. Then, a higher-order level supervision algorithm decides in real time the estimator that will parametrize the adaptive controller at each time instant according to the values of the above supervisory indexes. There exists a minimum residence time between switches in such a way that the closed-loop system stability is guaranteed. It is verified through simulations that multiestimation-based schemes can improve the transient response of adaptive systems as well as the closed-loop behavior when a sudden change in the parameters or in the reference input occurs by appropriate switching between the various estimation schemes running in parallel. The closed-loop system is proved to be robustly stable under the influence of uncertainties due to a poor modeling of the robotic manipulator. Finally, the usefulness of the proposed scheme is highlighted by some simulation examples.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Ali Ben Brahim ◽  
Slim Dhahri ◽  
Fayçal Ben Hmida ◽  
Anis Sellami

This article deals with the sliding mode fault-tolerant control (FTC) problem for a nonlinear system described under Takagi-Sugeno (T-S) fuzzy representation. In particular, the nonlinear system is corrupted with multiplicative actuator faults, process faults, and uncertainties. We start by constructing the separated FTC design to ensure robust stability of the closed-loop nonlinear system. First, we propose to conceive an adaptive observer in order to estimate nonlinear system states, as well as robust multiplicative fault estimation. The novelty of the proposed approach is that the observer gains are obtained by solving the multiobjective linear matrix inequality (LMI) optimization problem. Second, an adaptive sliding mode controller is suggested to offer a solution to stabilize the closed-loop system despite the occurrence of real fault effects. Compared with the separated FTC, this paper provides an integrated sliding mode FTC in order to achieve an optimal robustness interaction between observer and controller models. Thus, in a single-step LMI formulation, sufficient conditions are developed with multiobjective optimization performances to guarantee the stability of the closed-loop system. At last, nonlinear simulation results are given to illustrate the effectiveness of the proposed FTC to treat multiplicative faults.


Author(s):  
Yiqi Xu

This paper studies the attitude-tracking control problem of spacecraft considering on-orbit refuelling. A time-varying inertia model is developed for spacecraft on-orbit refuelling, which actually includes two processes: fuel in the transfer pipe and fuel in the tank. Based upon the inertia model, an adaptive attitude-tracking controller is derived to guarantee the stability of the resulted closed-loop system, as well as asymptotic convergence of the attitude-tracking errors, despite performing refuelling operations. Finally, numerical simulations illustrate the effectiveness and performance of the proposed control scheme.


2018 ◽  
Vol 151 ◽  
pp. 04008
Author(s):  
Rouzbeh Moradi ◽  
Alireza Alikhani ◽  
Mohsen Fathi Jegarkandi

Reference trajectory management is a method to modify reference trajectories for the faulty system. The modified reference trajectories define new maneuvers for the system to retain its pre-fault dynamic performance. Controller reconfiguration is another method to handle faults in the system, for instance by adjusting the controller parameters (coefficients). Both of these two methods have been considered in the literature and are proven to be capable of handling various faults. However, the comparison of these two methods has not been considered sufficiently. In this paper, a controller reconfiguration mechanism and a reference trajectory management are proposed for the spacecraft attitude fault tolerant control problem. Then, these two methods are compared under the same conditions, and it is shown that the proposed controller reconfiguration has better performance than the proposed reference trajectory management. The reason is that the controller reconfiguration has more variables to modify the closed-loop system behavior.


Author(s):  
Malika Sader ◽  
Fuyong Wang ◽  
Zhongxin Liu ◽  
Zengqiang Chen

This paper studies the containment control problem for a class of nonlinear multi-agent systems (MASs) with actuator faults (AFs) and external disturbance under switching communication topologies. To address this problem, a new fuzzy fault-tolerant containment control method is developed via utilizing adaptive mechanisms. Furthermore, a sufficient condition is obtained to guarantee the stability of the considered closed-loop system by the dwell time technique combined with Lyapunov stability theory. Unlike the traditional method to estimate the weight matrix, the fuzzy logic system is used to estimate the norm of weight vectors. Thus, the difficulty that the unknown nonlinear function cannot be compensated for when the actuator produces outage or stuck fault is solved. Compared with the existing controllers for nonlinear MASs, the proposed controller is more suitable for the considered problem under the influence of AFs that are detrimental to the operation of each agent system. Besides which, the closed-loop system is proven to be stable by using the developed controller, and all followers converge asymptotically to the convex hull formed by the leaders. Finally, an example based on a reduced-order aircraft model is presented to verify the effectiveness of the designed control scheme.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jinsheng Xing ◽  
Naizheng Shi

This paper proposes a stable adaptive fuzzy control scheme for a class of nonlinear systems with multiple inputs. The multiple inputs T-S fuzzy bilinear model is established to represent the unknown complex systems. A parallel distributed compensation (PDC) method is utilized to design the fuzzy controller without considering the error due to fuzzy modelling and the sufficient conditions of the closed-loop system stability with respect to decay rateαare derived by linear matrix inequalities (LMIs). Then the errors caused by fuzzy modelling are considered and the method of adaptive control is used to reduce the effect of the modelling errors, and dynamic performance of the closed-loop system is improved. By Lyapunov stability criterion, the resulting closed-loop system is proved to be asymptotically stable. The main contribution is to deal with the differences between the T-S fuzzy bilinear model and the real system; a global asymptotically stable adaptive control scheme is presented for real complex systems. Finally, illustrative examples are provided to demonstrate the effectiveness of the results proposed in this paper.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3223 ◽  
Author(s):  
Liu ◽  
Zhang ◽  
Zou

This paper presents an active disturbance rejection control (ADRC) technique for load frequency control of a wind integrated power system when communication delays are considered. To improve the stability of frequency control, equivalent input disturbances (EID) compensation is used to eliminate the influence of the load variation. In wind integrated power systems, two area controllers are designed to guarantee the stability of the overall closed-loop system. First, a simplified frequency response model of the wind integrated time-delay power system was established. Then the state-space model of the closed-loop system was built by employing state observers. The system stability conditions and controller parameters can be solved by some linear matrix inequalities (LMIs) forms. Finally, the case studies were tested using MATLAB/SIMULINK software and the simulation results show its robustness and effectiveness to maintain power-system stability.


Sign in / Sign up

Export Citation Format

Share Document