scholarly journals Adaptive Stabilization Control for a Class of Complex Nonlinear Systems Based on T-S Fuzzy Bilinear Model

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jinsheng Xing ◽  
Naizheng Shi

This paper proposes a stable adaptive fuzzy control scheme for a class of nonlinear systems with multiple inputs. The multiple inputs T-S fuzzy bilinear model is established to represent the unknown complex systems. A parallel distributed compensation (PDC) method is utilized to design the fuzzy controller without considering the error due to fuzzy modelling and the sufficient conditions of the closed-loop system stability with respect to decay rateαare derived by linear matrix inequalities (LMIs). Then the errors caused by fuzzy modelling are considered and the method of adaptive control is used to reduce the effect of the modelling errors, and dynamic performance of the closed-loop system is improved. By Lyapunov stability criterion, the resulting closed-loop system is proved to be asymptotically stable. The main contribution is to deal with the differences between the T-S fuzzy bilinear model and the real system; a global asymptotically stable adaptive control scheme is presented for real complex systems. Finally, illustrative examples are provided to demonstrate the effectiveness of the results proposed in this paper.

2012 ◽  
Vol 229-231 ◽  
pp. 2209-2212
Author(s):  
Bao Bin Liu ◽  
Wei Zhou

Logic-based switching adaptive control scheme is proposed for the model of DC-DC buck converter in presence of uncertain parameters and power supply disturbance. All uncertain parameters and the disturbance are estimated together through constructing Lyapunov function. And a switching mechanism is used to ensure global asymptotic stability of the closed-loop system. The results of simulation show that even if there are multiple unknown parameters in the small-signal model, the control system of DC-DC buck converter can estimate unknown parameters quickly and accurately.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Xiaoyan Qin

This paper studies the problem of the adaptive neural control for a class of high-order uncertain stochastic nonlinear systems. By using some techniques such as the backstepping recursive technique, Young’s inequality, and approximation capability, a novel adaptive neural control scheme is constructed. The proposed control method can guarantee that the signals of the closed-loop system are bounded in probability, and only one parameter needs to be updated online. One example is given to show the effectiveness of the proposed control method.


2018 ◽  
Vol 41 (5) ◽  
pp. 1266-1277 ◽  
Author(s):  
Kun Yan ◽  
Mou Chen ◽  
Qiangxian Wu ◽  
Ke Lu

In this paper, an adaptive robust fault-tolerant control scheme is developed for attitude tracking control of a medium-scale unmanned autonomous helicopter with rotor flapping dynamics, external unknown disturbances and actuator faults. For the convenience of control design, the actuator dynamics with respect to the tail rotor are introduced. The adaptive fault observer and robust item are employed to observe the actuator faults and eliminate the effect of external disturbances, respectively. A backstepping-based robust fault-tolerant control scheme is designed with the aim of obtaining satisfactory tracking performance and closed-loop system stability is proved via Lyapunov analysis, which guarantees the convergence of all closed-loop system signals. Simulation results are given to show the effectiveness of the proposed control method.


1998 ◽  
Vol 120 (3) ◽  
pp. 814-821
Author(s):  
H. M. Sardar ◽  
M. Ahmadian

The validity of the claim by many studies that the damping and stiffness forces can be ignored when designing a model reference adaptive controller, is examined. For a simple plant, the sensitivity of the closed loop system to the inertial, damping, and stiffness nonlinearities are investigated, through a simulation analysis. It is shown that the closed loop system is sensitive to the changes in the inertial nonlinearities, and relatively insensitive to variations in the damping and stiffness forces. This supports the assumption made in many previous studies.


Author(s):  
Woosoon Yim ◽  
Sahjendra N. Singh

The paper treats the question of end point regulation of multi-link light-weight manipulators using the state dependent Riccati equation (SDRE) method. It is assumed that each link is flexible and deforms when maneuvered. It is well known that end point trajectory control using widely used feedback linearization technique is not possible since the system is nonminimum phase. Furthermore, control saturation is a major problem in controlling nonlinear systems. In this paper, an optimal control problem is formulated for the derivation of control law with and without control constraints on the joint torques and suboptimal control laws are designed using the SDRE method. This design approach is applicable to minimum and as well as nonminimum phase nonlinear systems. For the purpose of control, psuedo joint angles and elastic modes of each link are regulated to their equilibrium values which correspond to the target end point under gravity. Weighting matrices in the quadratic performance index provide flexibility in shaping the psuedo angle and elastic mode trajectories. In the closed-loop system, the equilibrium state is asymptotically stable, and vibration is uppressed. Simulation results are presented for a single link flexible manipulator which shows that in the closed-loop system, end point regulation is accomplished even with hard bounds on the control torque, and that the transient characteristics of the psuedo angles and elastic modes are easily shaped by the choice of the the performance criterion.


2017 ◽  
Vol 40 (7) ◽  
pp. 2270-2277 ◽  
Author(s):  
Zhibao Song ◽  
Junyong Zhai ◽  
Zhengwei Zhu

This paper is concerned with the problem of global stabilization for switched stochastic nonlinear systems under arbitrary switchings. Based on the unbounded time-varying scaling of states, we design a state feedback controller to render the closed-loop switched system asymptotically stable in probability. Two examples are given to demonstrate the effectiveness of the proposed control scheme.


Author(s):  
Junyong Zhai ◽  
Chunjian Qian ◽  
Hui Ye

This paper considers the problem of semiglobal stabilization by output feedback for a class of generalized multi-input and multi-output uncertain nonlinear systems. Due to the presence of mismatched uncertainties and the lack of triangularity condition, the systems under consideration are not uniformly completely observable. Combining the output feedback domination approach and block-backstepping scheme together, a series of linear output feedback controllers are constructed recursively for each subsystems and the closed-loop system is rendered semiglobally asymptotically stable.


2015 ◽  
Vol 1094 ◽  
pp. 441-444
Author(s):  
Dan Dan Xie ◽  
Xiong Tong ◽  
Xian Xie ◽  
Kai Hou ◽  
Ji Yong Li

The text mainly introduced the thickener’s front technology and also talked about the process of using flocculent addition and the emissions of underflow density presenting a more optimal automatic control scheme on the basis of the original automatic project. Using automatic control components like PLC programmable logic controller and the control elements of the inverter make the thickener in a whole closed-loop system for the flocculant addition and the density of the ore and the process of discharge. It will bring a positive side for our economic, social and ecological environment.


1996 ◽  
Vol 29 (9) ◽  
pp. 262-265 ◽  
Author(s):  
C.R. Johnson ◽  
K.J. Burnham

This paper presents the results of an investigative study with the aim being to obtain and assess the appropriateness of bilinear model structures for replicating the characteristics of a brewery fermentation process. Based on realtime data taken from a brewery fermentation plant, it is shown that a discrete-time twin-bilinear model, which simultaneously relates temperature to specific gravity and specific gravity to temperature, provides an adequate input/output reconstruction. The ability of the twin-bilinear model structure is discussed and possibilities for its utilization with an adaptive closed loop system are considered.


Sign in / Sign up

Export Citation Format

Share Document