Heat Transfer and Flow Characteristics of Two-Dimensional Jets Impinging on Heated Protrusions With Crossflow of the Spent Air

1992 ◽  
Vol 114 (1) ◽  
pp. 81-87 ◽  
Author(s):  
G. L. Whidden ◽  
J. Stevens ◽  
B. W. Webb

The flow structure and local heat transfer characteristics of two-dimensional slot jets impinging on heated protrusions has been investigated. The spent air was constrained to exit at one end of the channel, forming a crossflow. The effects of three parameters on the heat transfer were examined for an array of five protruding heat sources. They include the jet slot width, distance between the jet exit and the protrusion, and the average jet Reynolds number. Laser-Doppler velocimeter measurements were made to detail the mean and turbulent flow structure in the channel. Experimental results reveal that the flow and heat transfer are dominated by turbulent transport even for Reynolds numbers as low as 300. Two transport mechanisms were identified affecting the heat transfer. The first was jet impingement, the second being crossflow of the spent air. A complex interaction between the two mechanisms was observed. At low nozzle-protrusion spacing with large slot jets the heat transfer was dominated by the crossflow, whereas for high nozzle-protrusion spacing and small jets, transport was dominated by jet impingement. It is postulated that the highest average Nusselt number occurs when the jets and the crossflow influence act with near-equal intensity.

Author(s):  
Shou-Shing Hsieh ◽  
Jung-Tai Huang

An experimental study was performed in a confined circular single jet impingement. The effect of jet Reynolds number, nozzle-to-plate spacing and heat flux levels on heat transfer characteristics of the heated target surface was examined and presented. Flow visualization was made to broaden our fundamental understanding of the physical process of the type of flow. Transition and turbulent regimes are identified. The local heat transfer coefficient along the surface is measured and correlation of the stagnation point Nusselt number are presented and discussed.


2000 ◽  
Author(s):  
M. Greiner ◽  
P. F. Fischer ◽  
H. M. Tufo

Abstract Two-dimensional Navier-Stokes simulations of heat and momentum transport in an intermittently grooved passage are performed using the spectral element technique for the Reynolds number range 600 ≤ Re ≤ 1800. The computational domain has seven contiguous transverse grooves cut symmetrically into opposite walls, followed by a flat section with the same length. Periodic inflow/outflow boundary conditions are employed. The development and decay of unsteady flow is observed in the grooved and flat sections, respectively. The axial variation of the unsteady component of velocity is compared to the local heat transfer, shear stress and pressure gradient. The results suggest that intermittently grooved passages may offer even higher heat transfer for a given pumping power than the levels observed in fully grooved passages.


2021 ◽  
Author(s):  
Karan Anand

This research provides a computational analysis of heat transfer due to micro jet-impingement inside a gas turbine vane. A preliminary-parametric analysis of axisymmetric single jet was reported to better understand micro jet-impingement. In general, it was seen that as the Reynolds number increased the Nusselt number values increased. The jet to target spacing had a considerably lower impact on the heat transfer rates. Around 30% improvement was seen by reducing the diameter to half while changing the shape to an ellipse saw 20.8% improvement in Nusselt value. The numerical investigation was then followed by studying the heat transfer characteristics in a three-dimensional, actual-shaped turbine vane. Effects of jet inclination showed enhanced mixing and secondary heat transfer peaks. The effect of reducing the diameter of the jets to 0.125 mm yielded 55% heat transfer improvements compared to 0.51 mm; the tapering effect also enhanced the local heat transfer values as local velocities at jet exit increased.


1984 ◽  
Vol 106 (1) ◽  
pp. 27-33 ◽  
Author(s):  
S. A. Striegl ◽  
T. E. Diller

An experimental study was done to determine the effect of entrainment temperature on the local heat transfer rates to single and multiple, plane, turbulent impinging air jets. To determine the effect of entrainment of the surrounding fluid, the single jet issued into an environment at a temperature which was varied between the initial temperature of the jet and the temperature of the heated impingement plate. An analytical model was used to correlate the measured heat transfer rate to a single jet. The effect of the entrainment temperature in a single jet was then used to analyze the effect of entrainment from the recirculation region between the jets of a jet array. Using the measured temperature in the recirculation region to include the effect of entrainment, the single jet correlations were successfully applied to multiple jets.


2003 ◽  
Vol 125 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Seong-Yeon Yoo ◽  
Jong-Hark Park ◽  
Min-Ho Chung

When heat is released by forced convection from electronic modules in a narrow printed circuit board channel, complex flow phenomena—such as stagnation and acceleration on the front surface, separation and reattachment on the top surface, wake or cavity flow near the rear surface—affect the heat transfer characteristics. The purpose of this study is to investigate how these flow conditions influence the local heat transfer from electronic modules. Experiments are performed on a three-dimensional array of hexahedral elements as well as on a two-dimensional array of rectangular elements. Naphthalene sublimation technique is employed to measure three-dimensional local mass transfer, and the mass transfer data are converted to their counterparts of the heat transfer process using the analogy equation between heat and mass transfer. Module location and streamwise module spacing are varied, and the effect of vortex generators on heat transfer enhancement is also examined. Dramatic change of local heat transfer coefficients is found on each surface of the module, and three-dimensional modules have a little higher heat transfer value than two-dimensional modules because of bypass flow. Longitudinal vortices formed by vortex generator enhance the mixing of fluids and thereby heat transfer, and the rectangular wing type vortex generator is found to be more effective than the delta wing type vortex generator.


2002 ◽  
Vol 68 (669) ◽  
pp. 1523-1530
Author(s):  
Masafumi HIROTA ◽  
Hiroshi NAKAYAMA ◽  
Lei CAI ◽  
Hideomi FUJITA ◽  
Tatsuhito KATOH ◽  
...  

Author(s):  
Xing Yang ◽  
Zhao Liu ◽  
Zhenping Feng

Detailed heat transfer distributions are numerically investigated on a multiple jet impingement target surface with staggered arrays of spherical dimples where coolant can be extracted through film holes for external film cooling. The three dimensional Reynolds-averaged Navier-Stokes analysis with SST k-ω turbulence model is conducted at jet Reynolds number from 15,000 to 35,000. The separation distance between the jet plate and the target surface varies from 3 to 5 jet diameters and two jet-induced crossflow schemes are included to be referred as large and small crossflow at one and two opposite exit openings correspondingly. Flow and heat transfer results for the dimpled target plate with three suction ratios of 2.5%, 5.0% and 12.0% are compared with those on dimpled surfaces without film holes. The results indicate the presence of film holes could alter the local heat transfer distributions, especially near the channel outlets where the crossflow level is the highest. The heat transfer enhancements by applying film holes to the dimpled surfaces is improved to different degrees at various suction ratios, and the enhancements depend on the coupling effect of impingement and channel flow, which is relevant to jet Reynolds number, jet-to-plate spacing and crossflow scheme.


Author(s):  
D. Chakraborty ◽  
G. Biswas ◽  
P. K. Panigrahi

A numerical investigation was carried out to study the flow and heat transfer behavior of a vertical circular tube, which is situated between two annular fins in cross-flow. The flow structure of the limiting streamlines on the surface of the circular tube and the annular fins was analysed. A finite volume method was employed to solve the Navier-Stokes and energy equations. The numerical results pertaining to heat transfer and flow characteristics were compared with the available experimental results. The following salient features were observed in this configuration. A horseshoe vortex system was formed at the junction of the stagnation line of the circular tube and the annular fin. The separation took place at the rear of the tube. The influence of the horseshoe vortices on local heat transfer was substantial. The ratio of the axial gap between two annular fins (L) to the radial protrusion length of the annular fin (LR) was identified as an important parameter. The flow and heat transfer results were presented for different L/LR ratios for a Reynolds number of 1000.


Sign in / Sign up

Export Citation Format

Share Document