scholarly journals Local Heat Transfer and Flow Characteristics in Two-Pass Channels with an Inclined Divider Wall.

2002 ◽  
Vol 68 (669) ◽  
pp. 1523-1530
Author(s):  
Masafumi HIROTA ◽  
Hiroshi NAKAYAMA ◽  
Lei CAI ◽  
Hideomi FUJITA ◽  
Tatsuhito KATOH ◽  
...  
Author(s):  
D. Chakraborty ◽  
G. Biswas ◽  
P. K. Panigrahi

A numerical investigation was carried out to study the flow and heat transfer behavior of a vertical circular tube, which is situated between two annular fins in cross-flow. The flow structure of the limiting streamlines on the surface of the circular tube and the annular fins was analysed. A finite volume method was employed to solve the Navier-Stokes and energy equations. The numerical results pertaining to heat transfer and flow characteristics were compared with the available experimental results. The following salient features were observed in this configuration. A horseshoe vortex system was formed at the junction of the stagnation line of the circular tube and the annular fin. The separation took place at the rear of the tube. The influence of the horseshoe vortices on local heat transfer was substantial. The ratio of the axial gap between two annular fins (L) to the radial protrusion length of the annular fin (LR) was identified as an important parameter. The flow and heat transfer results were presented for different L/LR ratios for a Reynolds number of 1000.


2000 ◽  
Vol 123 (1) ◽  
pp. 39-50 ◽  
Author(s):  
G. J. Hwang ◽  
S. C. Tzeng ◽  
C. P. Mao ◽  
C. Y. Soong

The present work is concerned with experimental investigation of the convective heat transfer in a radially rotating four-pass serpentine channel. Two types of staggered half-V rib turbulators are considered to examine their effects on heat transfer enhancement. The coolant air is pressurized and pre-cooled to compensate for the low rotating rate and low temperature or density difference in key parameters of thermal and flow characteristics. The geometric dimensions are fixed, whereas the ranges of the thermal and flow parameters in the present measurements are 20,000⩽Re⩽40,000,0⩽Ro⩽0.21, and Gr/Re2∼O10−2. The present results disclose the effects of the pressurized flow, rib arrangement, channel rotation, and centrifugal buoyancy on the local heat transfer in each passage of the channel. Finally, the present data are fitted on correlation equations for evaluation of local heat transfer in the rotating four-pass ribbed channel configurations considered.


Author(s):  
Christopher G. Cvetkovski ◽  
Hoda S. Mozaffari ◽  
Stanley Reitsma ◽  
Tirupati Bolisetti ◽  
David S.-K. Ting

Vertical ground source heat pumps operate by pumping a heat transfer fluid through a pipe buried in the ground. There is a U-Bend at its deepest point to return the fluid to the surface. Incidentally, the U-Bend does more than packing the extensive length of the heat transferring conduit within a single compact borehole. Large flow structures called Dean’s vortices are generated in the bend and these, along with the resulting turbulence produced, are known to significantly enhance the heat transfer processes, and hence, shorten the required length. This study examines the specific roles of Reynolds and Dean numbers on the flow structure and the resulting heat transfer in a pipe with a U-Bend. Water flowing in a pipe without and with heated wall was simulated using FLUENT. The model was verified based on available data in the literature. The efficacy of the local heat transfer rate along the pipe was cast with respect to the subtle changes in the flow characteristics under varying Reynolds number and Dean number.


Author(s):  
M. H. Kim ◽  
J. S. Shin ◽  
C. Huh ◽  
T. J. Kim ◽  
K. W. Seo

This paper reviews recent Korean studies of flow characteristics, flow boiling, and flow condensation in micro- and mini-channels. The characteristics of local heat transfer and pressure drops were experimentally investigated using condensing R134a two-phase flow, in a single round tube, with an inner diameter of 0.691 mm. New experimental techniques were developed to measure the condensation heat transfer coefficient. Tests were performed for a mass flux of 100 to 600 kg/m2s, a heat flux of 5 to 20 kW/m2, and a saturation temperature of 40°C. The experimental local condensation heat transfer coefficients and two-phase frictional pressure gradients are shown. Comparisons of experimental data with existing models reveal that the correlations failed to predict the present data. This study contains the unique sub-millimeter-diameter, single round tube, condensation data reported in the literature.


Author(s):  
Shou-Shing Hsieh ◽  
Jung-Tai Huang

An experimental study was performed in a confined circular single jet impingement. The effect of jet Reynolds number, nozzle-to-plate spacing and heat flux levels on heat transfer characteristics of the heated target surface was examined and presented. Flow visualization was made to broaden our fundamental understanding of the physical process of the type of flow. Transition and turbulent regimes are identified. The local heat transfer coefficient along the surface is measured and correlation of the stagnation point Nusselt number are presented and discussed.


2020 ◽  
Vol 37 (1) ◽  
pp. 41-59 ◽  
Author(s):  
Longfei Wang ◽  
Songtao Wang ◽  
Xun Zhou ◽  
Fengbo Wen ◽  
Zhongqi Wang

AbstractRibs effects on the heat transfer performance and cooling air flow characteristics in various aspect ratios (AR) U-shaped channels under different working conditions are numerically investigated. The ribs angle and channel orientation are 45° and 90°, respectively, and the aspect ratios are 1:2, 1:1, 2:1. The inlet Reynolds number changes from 1e4 to 4e4 and rotational speeds include 0, 550 rpm, 1,100 rpm. Local heat transfer coefficient, endwall surface heat transfer coefficient ratio and augmentation factor are the three primary criteria to measure channel heat transfer. Ribs increase the heat transfer area and improve heat transfer coefficient of ribbed surfaces significantly, especially in the 1st pass, while the endwall surface contributes more to channel heat transfer because of the larger area and relatively smaller heat transfer coefficient. The wide channel (AR =2:1) owns the better augmentation factor than the narrow channel (AR =1:2) and ribs heat transfer weight increases with an increase of the inlet Reynolds number. Rotating slightly reduces the ribs heat transfer weight in channel and the trailing surface in 1st pass is the main influence object of rotating.


Author(s):  
Naveen Sharma ◽  
Andallib Tariq ◽  
Manish Mishra

Abstract This study aims to understand the effect of flow structures within the inter-rib regions of a novel permeable rib configuration in vertical and horizontal streamwise planes upon surface heat transfer parameters. In this investigation, the liquid crystal thermography (LCT) and particle image velocimetry (PIV) are used to extract the local heat transfer and flow-field information, respectively. The effect of slit-converging angle (ϕ = 0 deg, 5 deg, 10 deg, and 15 deg) are examined at a typical Reynolds number of 42,500 and relative rib pitch ratio of 10. Surface- and spanwise-average and overall augmentation Nusselt numbers are obtained along with the pressure drop measurements. Flow-field experiments are performed in both vertical and horizontal streamwise planes, and the results are expressed in terms of mean velocities, stream traces, turbulent statistics, coherent structures, and turbulent kinetic energy budgets. Critical points are also identified on the basis of critical point theory, which provides evidences of the different flow phenomena accountable for enhance mixing between the ribs. The secondary flow coming from the slit shows three-dimensionality in the flow resulting to higher turbulence intensity and rotational motion (say higher turbulent mixing), and thereby leading to high heat transfer just behind the permeable rib. The permeable ribs are also helpful in the reduction of friction factor by 32% with a typical ϕ value of 5 deg, compared to solid ribs, while the thermohydraulic performance increases with increasing ϕ from 0 deg to 15 deg up to 21%. The pentagonal ribs with convergent slit provide comparable or better performance among the permeable rib geometries used in the pertinent literature.


Sign in / Sign up

Export Citation Format

Share Document