Numerical Analysis of Gas-Particle Two-Phase Subsonic Freejets

1992 ◽  
Vol 114 (3) ◽  
pp. 420-429 ◽  
Author(s):  
N. Hatta ◽  
R. Ishii ◽  
H. Fujimoto

This paper describes a numerical analysis of gas-droplet two-phase subsonic free jets in the axisymmetric system. Thermal coupling through heat transfer to droplets, as well as momentum coupling through aerodynamic drag responsible for droplet motion, is taken into account in the present numerical model. The Navier-Stokes equations for a gas-phase interacting with particle phase are solved by a time-dependent difference technique and the particle-phase is solved by a discrete particle cloud model. The jet flow structures of mixture composed of air and water-droplets with 1 μm, 5 μm, and 30 μm, respectively, in diameter are calculated with a single particle size. Some of significant characteristics for the two-phase subsonic free jets are pointed out, in particular, focusing upon the effect of particle size on the flow structure.

2006 ◽  
Vol 4 ◽  
pp. 224-236
Author(s):  
A.S. Topolnikov

The paper is devoted to numerical modeling of Navier–Stokes equations for incompressible media in the case, when there exist gas and liquid inside the rectangular calculation region, which are separated by interphase boundary. The set of equations for incompressible liquid accounting for viscous, gravitational and surface (capillary) forces is solved by finite-difference scheme on the spaced grid, for description of interphase boundary the ideology of Level Set Method is used. By developed numerical code the set of hydrodynamic problems is solved, which describe the motion of two-phase incompressible media with interphase boundary. As a result of numerical simulation the solutions are obtained, which are in good agreement with existing analytical and experimental solutions.


2007 ◽  
Vol 18 (04) ◽  
pp. 536-545 ◽  
Author(s):  
NAOKI TAKADA ◽  
AKIO TOMIYAMA

For interface-tracking simulation of two-phase flows in various micro-fluidics devices, we examined the applicability of two versions of computational fluid dynamics method, NS-PFM, combining Navier-Stokes equations with phase-field modeling for interface based on the van der Waals-Cahn-Hilliard free-energy theory. Through the numerical simulations, the following major findings were obtained: (1) The first version of NS-PFM gives good predictions of interfacial shapes and motions in an incompressible, isothermal two-phase fluid with high density ratio on solid surface with heterogeneous wettability. (2) The second version successfully captures liquid-vapor motions with heat and mass transfer across interfaces in phase change of a non-ideal fluid around the critical point.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3092
Author(s):  
Lourenço Sassetti Mendes ◽  
Javier L. Lara ◽  
Maria Teresa Viseu

Spillway design is key to the effective and safe operation of dams. Typically, the flow is characterized by high velocity, high levels of turbulence, and aeration. In the last two decades, advances in computational fluid dynamics (CFD) made available several numerical tools to aid hydraulic structures engineers. The most frequent approach is to solve the Reynolds-averaged Navier–Stokes equations using an Euler type model combined with the volume-of-fluid (VoF) method. Regardless of a few applications, the complete two-phase Euler is still considered to demand exorbitant computational resources. An assessment is performed in a spillway offset aerator, comparing the two-phase volume-of-fluid (TPVoF) with the complete two-phase Euler (CTPE). Both models are included in the OpenFOAM® toolbox. As expected, the TPVoF results depend highly on the mesh, not showing convergence in the maximum chute bottom pressure and the lower-nappe aeration, tending to null aeration as resolution increases. The CTPE combined with the k–ω SST Sato turbulence model exhibits the most accurate results and mesh convergence in the lower-nappe aeration. Surprisingly, intermediate mesh resolutions are sufficient to surpass the TPVoF performance with reasonable calculation efforts. Moreover, compressibility, flow bulking, and several entrained air effects in the flow are comprehended. Despite not reproducing all aspects of the flow with acceptable accuracy, the complete two-phase Euler demonstrated an efficient cost-benefit performance and high value in spillway aerated flows. Nonetheless, further developments are expected to enhance the efficiency and stability of this model.


2009 ◽  
Vol 74 ◽  
pp. 139-142
Author(s):  
Ting Ye ◽  
Hua Li

A modeling of two-phase system is presented for investigation of the cell motion and deformation in the microchannel subject to the mechanical and electrical coupled forces. In order to evaluate the mechanical force developed by cell membrane, it is treated as an incompressible and elastic shell with uniform thickness capable of shearing and bending deformation. Due to the irregular and complex cell configuration after deformation, the Maxwell stress tensor (MST) method is successfully employed to analyze the dielectrophoretic force. The modified particle binary level set (MPBLS) method is presented to accurately track the moving interface between the two phases, which is vital for a modeling of two-phase system. Afterwards the modified SIMPLER coupled with SIMPLEC is used to numerically solve the incompressible Navier-Stokes equations governing the entire flow field. On basis of the series of methods, the motion and deformation of red blood cell (RBC) in the microchannel under the mechanical and electrical forces are simulated to demonstrate the deformation process and the moving trajectory of RBC. The present study is not only of great value for deeper understanding of some diseases caused by cell abnormality, but also of practical significance for cell manipulation and separation.


1978 ◽  
Vol 45 (2) ◽  
pp. 456-456 ◽  
Author(s):  
Roger Temam ◽  
A. Chorin

2000 ◽  
Author(s):  
Eivind Helland ◽  
Rene Occelli ◽  
Lounes Tadrist

Abstract Simulations of 2D gas-particle flows in a vertical riser using a mixed Eulerian-Lagrangian approach are addressed. The model for the interstitial gas phase is based on the Navier-Stokes equations for two-phase flow with a coupling term between the gas and solid phases due to drag forces. The motion of particles is treated by a Lagrangian approach and the particles are assumed to interact through binary, instantaneous, non-frontal, inelastic collisions with friction. In this paper different particle clustering effects in the gas-particle flow is investigated.


2020 ◽  
Vol 419 ◽  
pp. 109674
Author(s):  
Makrand A. Khanwale ◽  
Alec D. Lofquist ◽  
Hari Sundar ◽  
James A. Rossmanith ◽  
Baskar Ganapathysubramanian

Sign in / Sign up

Export Citation Format

Share Document