Elastic Stress and Magnetic Field Concentration Near the Vertex of a Soft-Ferromagnetic 2D Compound Wedge

2008 ◽  
Vol 75 (4) ◽  
pp. 041013
Author(s):  
Davresh Hasanyan ◽  
Zhanming Qin ◽  
Liviu Librescu
2005 ◽  
Author(s):  
Davresh Hasanyan ◽  
Zhanming Qin ◽  
Liviu Librescu

The problem of the elastic stress and induced magnetic field concentration near the vertex of a compound wedge is modeled and investigated. The wedge is made of two isotropic dielectric soft-ferromagnetic materials and is immersed in a static magnetic field. By using eigenfunction series expansion technique, the components of the magnetoelastic stresses and the disturbed magnetic field near the vertex are determined. It is shown that in that region the magnetic permeability and the applied magnetic field have a strong influence on the elastic and Maxwell stresses concentration. The results are instrumental toward actively controlling the stress concentration intensity via the applied magnetic field.


1983 ◽  
Vol 50 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Y. Shindo

The problem of the diffraction of normally incident longitudinal waves on a Griffith crack located in an infinite soft ferromagnetic elastic solid is considered. It is assumed that the solid is a homogeneous and isotropic one and is permeated by a uniform magnetostatic field normal to the crack surfaces. Fourier transforms are used to reduce the problem to two simultaneous dual integral equations. The solution to the integral equations is expressed in terms of a Fredholm integral equation of the second kind having the kernel that is a finite integral. The dynamic singular stress field near the crack tip is obtained and the influence of the magnetic field on the dynamic stress intensity factor is shown graphically in detail. Approximate analytical expressions valid at low frequencies are also obtained and the range of validity of these expressions is examined.


2009 ◽  
Vol 25 (1) ◽  
pp. 95-102 ◽  
Author(s):  
C.-S. Yeh ◽  
C.-W. Ren

AbstractThe stress state of a magnetized elastic half-plane with a uniformly pressurized crack parallel to the free surface subjected to a uniform magnetic induction Bo is considered. The linear theory for a soft ferromagnetic elastic solid with muti-domain structure, which has been developed by Pao and Yeh [1] is adopted to investigate this problem. A numerical method is developed to determine the magnetoelastic stress intensity factor. The effect of the magnetic field and the boundary conditions on the magnetoelasitc stress intensity factor are shown graphically and numerically.


2020 ◽  
Vol 26 (15-16) ◽  
pp. 1276-1285
Author(s):  
Elham Tahmasebi ◽  
Nariman Ashrafi Khorasani ◽  
Ali Imam

In order to study the magnetoelastic instability and natural frequency of a ferromagnetic plate under a magnetic field, different magnetic force models are considered. In the present study, considering more realistic assumptions, new equations for the study of the vibrational behavior of ferromagnetic beam plates carrying the electric current in the magnetic field are presented by employing the theory of Eringen and Maxwell relations. Conclusively, the effects of magnetic traction and thermal fields created by electric current and eddy currents are taken into account. The coupled nonlinear differential equations of the system are separated by the Galerkin method and solved numerically. The numerical results are compared with the results in the literature, and the effect of different parameters on the vibration characteristics of the soft ferromagnetic beam plate is investigated. The results show that the components of the force that are created by magnetic tractions, as well as the assumption of thermal couplings, can significantly change the vibrational behavior of the plates. Also, by increasing the intensity of the electric current and the magnetic field, the amplitude of the oscillations of the plate is increased and instability occurs for certain values of these parameters in the system.


Sign in / Sign up

Export Citation Format

Share Document