Cavity Growth Simulation in 2.25Cr–1Mo Steel Under Creep-Fatigue Loading

2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Takashi Ogata

High temperature components in thermal power plants are subjected to creep-fatigue loading where creep cavities initiate and grow on grain boundaries. Development of a quantitative evaluation method of cavity growth is important for reliable maintenance of these components. In this study, a creep-fatigue test was carried out at 600°C on 2.25Cr–1Mo steel in a scanning electron microscope, and continuous observation of cavity growth behavior during the test was made. Based on the cavity growth observation, existing cavity growth models were modified and the simulated results using the modified model were compared to the observed cavity growth behavior. From the observation, spherical shape cavities initiate and grow up to their length of 2μm on the grain boundaries at the initial stage of damage, and then these cavities change their shape to cracklike and grow until their length reaches around 10μm. Finally, cracklike cavities coalesce with each other to form one microcrack along a grain boundary. It can be concluded that cavity growth rates are controlled by diffusion and power law creep under constrained conditions, based on the theoretical consideration of cavity growth mechanism. Through these discussions, a new cavity growth model was proposed by modifying conventional models. Both spherical and cracklike cavity growth rate equations were derived from the modified cavity growth model. It was indicated that the measured cavity growth rate was well predicted by the growth rate equations, derived from the modified model, and a cavity growth simulation result corresponds to the change in the maximum cavity size with number of cycles under the creep-fatigue loading.

Author(s):  
Takashi Ogata

High temperature components in thermal power plants are subjected to creep-fatigue loading where creep cavities initiate and grow on grain boundaries. Development of a quantitative evaluation method of cavity growth is important for reliable maintenance of these components. In this study, a creep-fatigue test was carried out at 600°C on 2.25Cr-1Mo steel in a scanning electron microscope, and continuous observation of cavity growth behavior on the surface during the test was made. Based on the cavity growth observation, existing cavity growth models were modified and a simulation result by the modified model was discussed by comparing with observed cavity growth behavior. From the observation, spherical shape cavities initiate and grow up to their length of 2μm on the grain boundaries at initial stage of damage, and then these cavities change their shape to crack-like to grow until their length reaches around 10μm. Finally, crack-like cavities coalesce each other to form one micro crack along a grain boundary. It can be concluded that cavity growth rates of these cavities are controlled by diffusion and power law creep under constrained condition based on theoretical consideration of cavity growth mechanism. Through these discussions, a new cavity growth model was proposed by modifying conventional models. Both spherical and crack-like cavity growth rate equations were derived from the modified cavity growth model. It was indicated that measured cavity growth rate was well predicted by the growth rate equations derived from the modified model, and a cavity growth simulation result corresponds to the change in the maximum cavity size with cycles under the creep-fatigue loading.


Author(s):  
Takashi Ogata

High temperature components in thermal power plants are subjected to creep and creep-fatigue loading where creep voids initiate and grow on grain boundaries. Development of a quantitative evaluation method of the void growth is important for reliable maintenance of these components. In this study, creep and creep-fatigue tests were carried out at 600 °C on a 1Cr-Mo-V casting steel. Creep damaged materials were produced by interrupting the creep tests and microstructure of the damaged materials were observed carefully by a scanning microscope. The creep-fatigue tests were also conducted in a scanning electron microscope, and continuous observation of void growth behavior during the tests was made. From the observations, spherical shape voids initiate and grow up to their length of 2μm on grain boundaries at initial stage of damage, and then these voids change their shape to crack-like to grow until their length reaches around 10μm under both the creep and the creep-fatigue conditions. Under the same stress level, the void growth rate in the creep-fatigue condition was faster than that in the creep condition indicating acceleration of void growth rate by cyclic loading. Previously proposed void growth simulation model, in which the void growth was controlled by diffusion and power law creep, was modified to express acceleration of the void growth by the cyclic loading. Void growth behavior within a certain area under both the creep and the creep-fatigue condition were simulated by the modified program. Predicted void growth behaviors agreed with observed ones. The void growth behavior of an actual turbine casing was also simulated and void growth behavior was discussed based on the result.


Author(s):  
Frederick W. Brust ◽  
Joonyoung Oh

In this paper, intergranular cavity growth in regimes, where both surface diffusion and deformation enhanced grain boundary diffusion are important, is studied. In order to continuously simulate the cavity shape evolution and cavity growth rate, a fully-coupled numerical method is proposed. Based on the fully-coupled numerical method, a gradual cavity shape change is predicted and this leads to an adverse effect on the cavity growth rates. As the portion of the cavity volume growth due to jacking and viscoplastic deformation in the total cavity volume growth increases, the initially spherical cavity evolves to V-shaped cavity. The numerical results are physically more realistic compared to results in the previous studies. The present numerical results suggest that the cavity shape evolution and cavity growth rate based on an assumed cavity shape, whether spherical or crack-like, cannot be used in this regime due to transitional coupled growth mechanisms.


Author(s):  
Ryo Kikuchi ◽  
Shujiro Suzuki ◽  
Ken Suzuki

Abstract Ni-based superalloys with excellent high temperature strength have been used in advanced thermal power plants. It was found that grain boundary cracking is caused in the alloy under creep-fatigue loading due to the degradation of the crystallinity of grain boundaries and the grain boundary cracking degrades the lifetime of the alloy drastically. In order to clarify the mechanism of intergranular cracking, in this research, static and dynamic strains were applied to a bicrystal structure of the alloy perpendicularly to the grain boundary using molecular dynamics analysis. In addition, the effect of the accumulation of vacancies in the area with high-density of dislocations on the strength of the bicrystal structure was analysed. It was found that the fracture mode of the bicrystal structure changed from ductile transgranular fracture to brittle intergranular one as strong functions of the combination of Schmid factor of the two grains and the density of defects around the grain boundary. The local heavy plastic deformation occurred around the grain boundary with large difference in Schmid factor between nearby grains and the diffusion of the newly grown dislocations and vacancies was suppressed by the large strain field due to the large mismatch of the crystallographic orientation between the grains. The accumulation of vacancies accelerated the local plastic deformation around the grain boundary. Therefore, the mechanism of the acceleration of intergranular cracking under creep-fatigue loading was successfully clarified by MD analysis.


Author(s):  
Kenta Ishihara ◽  
Yifan Luo ◽  
Hideo Miura

Abstract In recent years, in order to solve the global warming issue, the operating temperature of advanced thermal power plants has attempted to improve thermal efficiency and reduce CO2 emissions. Under the creep and creep-fatigue conditions at elevated temperature, however, the effective lifetime of heat-resistant alloys such as Ni-base Alloy 617, which has high strength and good corrosion resistance at about 750°C, was found to decrease drastically. Main reason for this short lifetime was attributed to the change in the crack initiation and propagation paths from transgranular one to intergranular one. Therefore, it is important to understand and express the criteria for grain boundary cracking. In this study, electron back-scatter diffraction (EBSD) analysis was applied to the visualization of the degradation process of the quality of grain boundaries in the alloy. The change in the crystallinity of grains and grain boundaries were continuously monitored during creep and creep-fatigue tests. It was found that accumulation of vacancies and dislocations degraded the crystallinity of grain boundaries and thus, their strength. The accumulation occurred around the specific grain boundaries which consisted of grains with large difference of Schmid factor during creep test. On the other hand, it occurred around all grain boundaries under the creep-fatigue loading. Thus, the accumulation of defects was clearly accelerated under the creep-fatigue loading. The critical image quality (IQ) value of intergranular cracking was almost the same regardless of the loading mode. Once the IQ value of the damaged grain boundaries decreased to a critical value, intergranular cracking started to occur at the grain boundaries.


Sign in / Sign up

Export Citation Format

Share Document