Forced Response Prediction of Constrained and Unconstrained Structures Coupled Through Frictional Contacts

Author(s):  
Ender Cigeroglu ◽  
Ning An ◽  
Chia-Hsiang Menq

In this paper, a forced response prediction method for the analysis of constrained and unconstrained structures coupled through frictional contacts is presented. This type of frictional contact problem arises in vibration damping of turbine blades, in which dampers and blades constitute the unconstrained and constrained structures, respectively. The model of the unconstrained/free structure includes six rigid body modes and several elastic modes, the number of which depends on the excitation frequency. In other words, the motion of the free structure is not artificially constrained. When modeling the contact surfaces between the constrained and free structure, discrete contact points along with contact stiffnesses are distributed on the friction interfaces. At each contact point, contact stiffness is determined and employed in order to take into account the effects of higher frequency modes that are omitted in the dynamic analysis. Depending on the normal force acting on the contact interfaces, quasistatic contact analysis is initially employed to determine the contact area as well as the initial preload or gap at each contact point due to the normal load. A friction model is employed to determine the three-dimensional nonlinear contact forces, and the relationship between the contact forces and the relative motion is utilized by the harmonic balance method. As the relative motion is expressed as a modal superposition, the unknown variables, and thus the resulting nonlinear algebraic equations in the harmonic balance method, are in proportion to the number of modes employed. Therefore the number of contact points used is irrelevant. The developed method is applied to a bladed-disk system with wedge dampers where the dampers constitute the unconstrained structure, and the effects of normal load on the rigid body motion of the damper are investigated. It is shown that the effect of rotational motion is significant, particularly for the in-phase vibration modes. Moreover, the effect of partial slip in the forced response analysis and the effect of the number of harmonics employed by the harmonic balance method are examined. Finally, the prediction for a test case is compared with the test data to verify the developed method.

Author(s):  
Ender Cigeroglu ◽  
Ning An ◽  
Chia-Hsiang Menq

In this paper, an improved wedge damper model is presented, based on which the effects of wedge dampers on the forced response of frictionally constrained blades are investigated. In the analysis, while the blade is modeled as a constrained structure, the damper is considered as an unconstrained structure. The model of the damper includes six rigid body modes and several elastic modes, the number of which depends on the excitation frequency. In other words, the motion of the damper is not artificially constrained. When modeling the contact surfaces of the wedge damper, discrete contact points along with contact stiffness are evenly distributed on the two contact surfaces. At each contact point, contact stiffness is determined and employed in order to take into account the effects of higher frequency modes that are omitted in the dynamic analysis. Depending on the engine rpm, quasi-static contact analysis is initially employed to determine the contact area as well as the initial preload or gap at each contact point due to the centrifugal force. A friction model is employed to determine the three-dimensional nonlinear contact forces and the relationship between the contact forces and the relative motion is utilized by the Harmonic Balance method. As the relative motion is expressed as a modal superposition, the unknown variables, and thus the resulting nonlinear algebraic equations, in the Harmonic Balance method is in proportion to the number of modes employed, and therefore the number of contact points used is irrelevant. The developed method is applied to tuned bladed disk system and the effects of normal load on the rigid body motion of the damper are investigated. It is shown that, the effect of rotational motion is significant, particularly for the in-phase vibration modes.


Author(s):  
Loi¨c Salles ◽  
Laurent Blanc ◽  
Fabrice Thouverez ◽  
Alexander M. Gouskov ◽  
Pierrick Jean

Contact interfaces with dry friction are frequently used in turbomachinery. Dry friction damping produced by the sliding surfaces of these interfaces reduces the amplitude of bladed-disk vibration. The relative displacements at these interfaces lead to fretting-wear which reduces the average life expectancy of the structure. Frequency response functions are calculated numerically by using the multi-Harmonic Balance Method (mHBM). The Dynamic Lagrangian Frequency-Time method is used to calculate contact forces in the frequency domain. A new strategy for solving non-linear systems based on dual time stepping is applied. This method is faster than using Newton solvers. It was used successfully for solving Nonlinear CFD equations in the frequency domain. This new approach allows identifying the steady state of worn systems by integrating wear rate equations a on dual time scale. The dual time equations are integrated by an implicit scheme. Of the different orders tested, the first order scheme provided the best results.


Author(s):  
Shangguan Bo ◽  
Zili Xu ◽  
Qilin Wu ◽  
XianDing Zhou ◽  
ShouHong Cao

To understand the mechanism of interfacial damping of axial loosely assembled dovetail to suppress blade vibration, a dry friction force model is presented by the Coulomb friction law and the macroslip model, and the mathematical expression of the friction force is derived. The nonlinear friction force is linearized as an equivalent stiffness and an equivalent damping through the one-term harmonic balance method. The effect of centrifugal force on the equivalent stiffness and the equivalent damping is studied. The forced response of one simplified blade with loosely assembled dovetail attachment is predicted by the harmonic balance method, in which the blade is described by the lumped mass and spring model, and the friction contact joints is simplified as a ideal friction damper. The results show that the equivalent stiffness of loosely assembled dovetail attachment increases with blade centrifugal force, gradually reaches a certain value, and there exists the maximum value for the equivalent stiffness. The equivalent damping increases at the beginning and then decreases with blade centrifugal force increasing, there exists a maximum too. The resonant frequency of blade rises with blade centrifugal force, but it no longer increases when the centrifugal force exceed a certain value. There exists a special centrifugal force on which the effect of dry friction damping is the best.


Author(s):  
Christian M. Firrone ◽  
Marco Allara ◽  
Muzio M. Gola

Dry friction damping produced by sliding surfaces is commonly used to reduce vibration amplitude of blade arrays in turbo-machinery. The dynamic behavior of turbine components is significantly affected by the forces acting at their contact interfaces. In order to perform accurate dynamic analysis of these components, contact models must be included in the numerical solvers. This paper presents a novel approach to compute the contact stiffness of cylindrical contacts, analytical and based on the continuous contact mechanics. This is done in order to overcome the known difficulties in simultaneously adjusting the values of both tangential and normal contact stiffness experimentally. Monotonic loading curves and hysteresis cycles of contact forces vs. relative displacement are evaluated as a function of the main contact parameters (i.e. the contact geometry, the material properties and the contact normal load). The new contact model is compared with other contact models already presented in literature in order to show advantages and limitations. The contact model is integrated in a numerical solver, based on the Harmonic Balance Method (HBM), for the calculation of the forced response of turbine components with friction contacts, in particular underplatform dampers. Results from the nonlinear numerical simulations are compared with those from validation experiments.


Author(s):  
Yann Colaïtis ◽  
Alain Batailly

Abstract In this study, a frequency-domain approach based on the harmonic balance method coupled to a predictor-corrector continuation algorithm is implemented for the qualitative analysis of blade-tip/casing contacts in aircraft engines. Unilateral contact and dry friction are taken into account through a regularized penalty law. To enhance the robustness of the methodology, particular attention is paid to the mitigation of the Gibbs phenomenon. To this end, the employed Alternating Frequency/Time scheme features a Lanczos σ-approximation so that spurious oscillations of the computed nonlinear contact forces become negligible. This approach is applied in combination with a model reduction technique on an industrial compressor blade: NASA rotor 37. In order to assess the influence of both the contact law regularization and the Lanczos σ-approximation, obtained results are thoroughly compared to an existing time integration-based numerical strategy relying on a Lagrange multiplier-based approach for contact treatment and that was previously confronted to experimental results. Presented results underline the very good agreement between the proposed methodology and the reference time integration numerical strategy. The proposed developments thus complement existing results on blade-tip/casing contact adding a much needed qualitative understanding of the interaction and an accurate assessment of the contact stiffening phenomenon.


Author(s):  
Abdallah Hadji ◽  
Njuki Mureithi

A hybrid friction model was recently developed by Azizian and Mureithi [1] to simulate the friction behavior of tube-support interaction. However, identification of the model parameters remains unresolved. In previous work, the friction model parameters were identified using reverse the harmonic method, where the following quantities were indirectly obtained by measuring the vibration response of a beam: friction force, sliding speed of the force of impact and local displacement at the contact point. In the present work, the simulation by the finite element method (FEM) of a beam clamped at one end and simply supported with the consideration of friction effect at the other is conducted. This beam is used to validate the inverse harmonic balance method and the parameters of the friction models identified previously. Two static friction models (the Coulomb model and Stribeck model) are tested. The two models produce friction forces of the correct order of magnitude compared to the friction force calculated using the inverse harmonic balance method. However, the models cannot accurately reproduce the beam response; the Stribeck friction model is shown to give the response closer to experiments. The results demonstrate some of the challenges associated with accurate friction model parameter identification using the inverse harmonic balance method. The present work is an intermediate step toward identification of the hybrid friction model parameters and, longer term, improved analysis of tube-support dynamic behavior under the influence of friction.


Author(s):  
Weiwei Gu ◽  
Zili Xu ◽  
Lv Qiang

The gap friction damper model is presented in this paper, which is employed to simulate the friction forces at the contact points of the shroud interface. Using the harmonic balance method (HBM), the friction force can be approximated by a series of harmonic functions. The governing differential equations of blade motion are transformed into a set of nonlinear algebraic equations, which can be solved iteratively to yield the steady-state response. The results show that the forced response is attenuated due to the additional damping introduced by frictional slip. The predicted results agree well with those of the Runge-Kutta method. In addition, the effect of parameters of damping structures such as the gap size, friction coefficient and normal load on the forced response of blades were studied. The results show that increasing the damper gap size causes a increase in resonant response. However, the increment isn’t obvious. In addition, an increase in friction coefficient or normal load decreases the forced response of blade.


2021 ◽  
Author(s):  
Yann Colaïtis ◽  
Alain Batailly

Abstract In this study, a frequency-domain approach based on the harmonic balance method coupled to a predictor-corrector continuation algorithm is implemented for the qualitative analysis of blade-tip/casing contacts in aircraft engines. Unilateral contact and dry friction are taken into account through a regularized penalty law. To enhance the robustness of the methodology, particular attention is paid to the mitigation of the Gibbs phenomenon. To this end, the employed Alternating Frequency/Time scheme features a Lanczos σ-approximation so that spurious oscillations of the computed nonlinear contact forces become negligible. This approach is applied in combination with a model reduction technique on an industrial compressor blade: NASA rotor 37. In order to assess the influence of both the contact law regularization and the Lanczos σ-approximation, obtained results are thoroughly compared to an existing time integration-based numerical strategy relying on a Lagrange multiplier-based approach for contact treatment and that was previously confronted to experimental results. Presented results underline the very good agreement between the proposed methodology and the reference time integration numerical strategy. The proposed developments thus complement existing results on blade-tip/casing contact adding a much needed qualitative understanding of the interaction and an accurate assessment of the contact stiffening phenomenon.


Sign in / Sign up

Export Citation Format

Share Document