A Parametric Study of the Blade Row Interaction in a High Pressure Turbine Stage

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
G. Persico ◽  
P. Gaetani ◽  
C. Osnaghi

An extensive experimental analysis on the subject of the unsteady periodic flow in a high subsonic high pressure (HP) turbine stage has been carried out at the Laboratorio di Fluidodinamica delle Macchine of the Politecnico di Milano (Italy). In this paper the aerodynamic blade row interaction in HP turbines, enforced by increasing the stator and rotor blade loading and by reducing the stator-rotor axial gap, is studied in detail. The time-averaged three-dimensional flowfield in the stator-rotor gap was investigated by means of a conventional five-hole probe for the nominal (0 deg) and highly positive (+22 deg) stator incidences. The evolution of the viscous flow structures downstream of the stator is presented to characterize the rotor incoming flow. The blade row interaction was evaluated on the basis of unsteady aerodynamic measurements at the rotor exit, performed with a fast-response aerodynamic pressure probe. Results show a strong dependence of the time-averaged and phase-resolved flowfield and of the stage performance on the stator incidence. The structure of the vortex-blade interaction changes significantly as the magnitude of the rotor-inlet vortices increases, and very different residual traces of the stator secondary flows are found downstream of the rotor. On the contrary, the increase in rotor loading enhances the unsteadiness in the rotor secondary flows but has a little effect on the vortex-vortex interaction. For the large axial gap, a reduction of stator-related effects at the rotor exit is encountered when the stator incidence is increased as a result of the different mixing rate within the cascade gap.

Author(s):  
G. Persico ◽  
P. Gaetani ◽  
C. Osnaghi

An extensive experimental analysis on the subject of the unsteady periodic flow in a highly subsonic HP turbine stage has been carried out at the Laboratorio di Fluidodinamica delle Macchine (LFM) of the Politecnico di Milano (Italy). In this paper the blade row interaction is progressively enforced by increasing the stator and rotor blade loading and by reducing the stator-rotor axial gap from 100% (very large to smooth the rotor inlet unsteadiness) to 35% (design configuration) of the stator axial chord. The time-averaged three-dimensional flow field in the stator-rotor gap was investigated by means of a conventional five-hole probe for the nominal (0°) and an highly positive (+22°) stator incidences. The evolution of the viscous flow structures downstream of the stator is presented to characterize the rotor incoming flow. The blade row interaction was evaluated on the basis of unsteady aerodynamic measurements at the rotor exit, performed with a fast-response aerodynamic pressure probe. Results show a strong dependence of the time-averaged and phase-resolved flow field and of the stage performance on the stator incidence. The structure of the vortex-blade interaction changes significantly as the magnitude of the rotor inlet vortices increases, and very different residual traces of the stator secondary flows are found downstream of the rotor. On the contrary, the increase of rotor loading enhances the unsteadiness in the rotor secondary flows but has a little effect on the vortex-vortex interaction. For the large axial gap, a reduction of stator-related effects at the rotor exit is encountered when the stator incidence is increased as a result of the different mixing rate within the cascade gap.


Author(s):  
O. Schennach ◽  
B. Paradiso ◽  
G. Persico ◽  
P. Gaetani ◽  
J. Woisetschla¨ger

The paper presents an experimental investigation of the flow field in a high-pressure transonic turbine with a downstream vane row (1.5 stage machine) concerning the airfoil indexing. The objective is a detailed analysis of the three dimensional flow field downstream of the high pressure turbine for different vane clocking positions. To give an overview of the time averaged flow field, measurements by means of a pneumatic five hole probe were performed upstream and downstream of the second stator. Furthermore in this planes additional unsteady measurements were carried out with Laser Doppler Velocimetry in order to record rotor phase resolved velocity, flow angle and turbulence distributions at two different clocking positions. In the measurement plane upstream the second vane the time resolved pressure field has been analyzed by means of a Fast Response Aerodynamic Pressure Probe. The paper shows that the secondary flows of the second vane are significantly modified for different clocking positions, in connection with the first vane modulation of the rotor secondary flows. An analysis of the performance of the second vane is also carried out.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
O. Schennach ◽  
J. Woisetschläger ◽  
B. Paradiso ◽  
G. Persico ◽  
P. Gaetani

This paper presents an experimental investigation of the flow field in a high-pressure transonic turbine with a downstream vane row (1.5 stage machine) concerning the airfoil indexing. The objective is a detailed analysis of the three-dimensional aerodynamics of the second vane for different clocking positions. To give an overview of the time-averaged flow field, five-hole probe measurements were performed upstream and downstream of the second stator. Furthermore in these planes additional unsteady measurements were carried out with laser Doppler velocimetry in order to record rotor phase-resolved velocity, flow angle, and turbulence distributions at two different clocking positions. In the planes upstream of the second vane, the time-resolved pressure field has been measured by means of a fast response aerodynamic pressure probe. This paper shows that the secondary flows of the second vane are significantly modified by the different clocking positions, in connection with the first vane modulation of the rotor secondary flows. An analysis of the performance of the second vane is also carried out, and a 0.6% variation in the second vane loss coefficient has been recorded among the different clocking positions.


2006 ◽  
Vol 129 (3) ◽  
pp. 580-590 ◽  
Author(s):  
P. Gaetani ◽  
G. Persico ◽  
V. Dossena ◽  
C. Osnaghi

An extensive experimental analysis was carried out at Politecnico di Milano on the subject of unsteady flow in high pressure (HP) turbine stages. In this paper, the unsteady flow measured downstream of a modern HP turbine stage is discussed. Traverses in two planes downstream of the rotor are considered, and, in one of them, the effects of two very different axial gaps are investigated: the maximum axial gap, equal to one stator axial chord, is chosen to “switch off” the rotor inlet unsteadiness, while the nominal gap, equal to 1/3 of the stator axial chord, is representative of actual engines. The experiments were performed by means of a fast-response pressure probe, allowing for two-dimensional phase-resolved flow measurements in a bandwidth of 80kHz. The main properties of the probe and the data processing are described. The core of the paper is the analysis of the unsteady rotor aerodynamics; for this purpose, instantaneous snapshots of the rotor flow in the relative frame are used. The rotor mean flow and its interaction with the stator wakes and vortices are also described. In the outer part of the channel, only the rotor cascade effects can be observed, with a dominant role played by the tip leakage flow and by the rotor tip passage vortex. In the hub region, where the secondary flows downstream of the stator are stronger, the persistence of stator vortices is slightly visible in the maximum stator-rotor axial gap configuration, whereas in the minimum stator-rotor axial gap configuration their interaction with the rotor vortices dominates the flow field. A good agreement with the wakes and vortices transport models has been achieved. A discussion of the interaction process is reported giving particular emphasis to the effects of the different cascade axial gaps. Some final considerations on the effects of the different axial gap over the stage performances are reported.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Jonathan Ong ◽  
Robert J. Miller ◽  
Sumiu Uchida

This paper presents a study of the effects of two types of hub coolant injection on the rotor of a high pressure gas turbine stage. The first involves the leakage flow from the hub cavity into the mainstream. The second involves a deliberate injection of coolant from a row of angled holes from the edge of the stator hub. The aim of this study is to improve the distribution of the injected coolant on the rotor hub wall. To achieve this, it is necessary to understand how the coolant and leakage flows interact with the rotor secondary flows. The first part of the paper shows that the hub leakage flow is entrained into the rotor hub secondary flow and the negative incidence of the leakage strengthens the secondary flow and increases its penetration depth. Three-dimensional unsteady calculations were found to agree with fast response pressure probe measurements at the rotor exit of a low speed test turbine. The second part of the paper shows that increasing the injected coolant swirl angle reduced the secondary flow penetration depth, improves the coolant distribution on the rotor hub, and improves stage efficiency. Most of the coolant however, was still found to be entrained into the rotor secondary flow.


Author(s):  
Jonathan H. P. Ong ◽  
Robert J. Miller ◽  
Sumiu Uchida

This paper presents a study of the effects of two types of hub coolant injection on the rotor of a high pressure gas turbine stage. The first involves the leakage flow from the hub cavity into the mainstream. The second involves a deliberate injection of coolant from a row of angled holes from the edge of the stator hub. The aim of this study is to improve the distribution of the injected coolant on the rotor hub wall. To achieve this, it is necessary to understand how the coolant and leakage flows interact with the rotor secondary flows. The first part of the paper shows that the hub leakage flow is entrained into the rotor hub secondary flow and the negative incidence of the leakage strengthens the secondary flow and increases its penetration depth. Three dimensional unsteady calculations were found to agree with fast response pressure probe measurements at the rotor exit of a low speed test turbine. The second part of the paper shows that increasing the injected coolant swirl angle reduced the secondary flow penetration depth, improves the coolant distribution on the rotor hub and improves stage efficiency. Most of the coolant however, was still found to be entrained into the rotor secondary flow.


2004 ◽  
Vol 128 (3) ◽  
pp. 484-491 ◽  
Author(s):  
Graham Pullan

A study of the three-dimensional stator-rotor interaction in a turbine stage is presented. Experimental data reveal vortices downstream of the rotor which are stationary in the absolute frame—indicating that they are caused by the stator exit flowfield. Evidence of the rotor hub passage vortices is seen, but additional vortical structures away from the endwalls, which would not be present if the rotor were tested in isolation, are also identified. An unsteady computation of the rotor row is performed using the measured stator exit flowfield as the inlet boundary condition. The strength and location of the vortices at rotor exit are predicted. A formation mechanism is proposed whereby stator wake fluid with steep spanwise gradients of absolute total pressure is responsible for all but one of the rotor exit vortices. This mechanism is then verified computationally using a passive-scalar tracking technique. The predicted loss generation through the rotor row is then presented and a comparison made with a steady calculation where the inlet flow has been mixed out to pitchwise uniformity. The loss produced in the steady simulation, even allowing for the mixing loss at inlet, is 10% less than that produced in the unsteady simulation. This difference highlights the importance of the time-accurate calculation as a tool of the turbomachine designer.


Author(s):  
G. Persico ◽  
A. Mora ◽  
P. Gaetani ◽  
M. Savini

In this paper the three-dimensional unsteady aerodynamics of a low aspect ratio, high pressure turbine stage is studied. Fully unsteady, three-dimensional numerical simulations are performed using the commercial code ANSYS-CFX The numerical model is critically evaluated against experimental data. Measurements were performed with a three-dimensional fast-response aerodynamic pressure probe in the closed-loop test rig operating in the Laboratorio di Fluidodinamica delle Macchine of the Politecnico di Milano (Italy). An analysis is first reported about the strategy to reduce the CPU and memory requirements while performing three-dimensional simulations of stator-rotor interaction in actual turbomachinery. What emerges as the best choice, at least for subsonic stages, is to simulate the unsteady behaviour of the rotor blade row alone by applying the stator outlet flow field as rotating inlet boundary condition. When measurements are available upstream of the rotor the best representation of the experimental results downstream of the stage is achieved. The agreement with the experiments achieved at the rotor exit makes the CFD simulation a key-tool for the comprehension and the interpretation of the physical mechanisms acting inside the rotor channel (often difficult to achieve using experiments only). Numerical investigations have been carried out by varying the incidence at the vane entrance. Different vane incidence angles lead to different size, position, and strength of secondary vortices coming out from the stator. The configuration is chosen is such a way to isolate the effects of the vortex-blade interaction. Results show that some general trends can be recognized in the vortex-blade interaction. The sense of rotation and the spanwise position of the incoming vortices play a crucial role on their interaction with the rotor vortices, thus determining both the time-mean and the time-resolved characteristics of the stage-exit secondary field.


Author(s):  
B. Paradiso ◽  
G. Persico ◽  
P. Gaetani ◽  
O. Schennach ◽  
R. Pecnik ◽  
...  

The unsteady and fully three-dimensional aerodynamics of HP turbines represent a relevant research branch for future aero-engine design. When stator-rotor interaction mechanisms and clocking effects are of concern, advanced measurement techniques as well as unsteady CFD codes are required. An extensive study on this topic was carried out in a one and a half stage transonic turbine operating at Graz University of Technology. Two steady and unsteady measurement techniques (Laser Doppler Velocimetry and a Fast Response Aerodynamic Pressure Probe) and an unsteady 3D CFD code were applied to the problem. In this paper, the 1st vane – rotor interaction is presented and discussed in detail to provide the basis for the analysis of the rotor – 2nd vane and the vane-vane interactions. The rotor-exit flowfield is mainly characterized by the wake, the hub passage vortex, the tip leakage vortex and the trailing edge shocks. All the flow structures except the tip leakage flow are strongly influenced by the first vane; in particular the main source of blade row interaction is the first vane trailing edge shock, that periodically alters the rotor trailing edge shock and the rotor hub passage vortex. The comparison with the CFD assesses the interpretation of the flow physics, and supports the identification of the first stator effects at the second stator inlet. A discussion on the stage performance is also provided.


Author(s):  
Graham Pullan

A study of the three-dimensional stator-rotor interaction in a turbine stage is presented. Experimental data reveal vortices downstream of the rotor which are stationary in the absolute frame — indicating that they are caused by the stator exit flowfield. Evidence of the rotor hub passage vortices is seen, but additional vortical structures away from the endwalls, which would not be present if the rotor were tested in isolation, are also identified. An unsteady computation of the rotor row is performed using the measured stator exit flowfield as the inlet boundary condition. The strength and location of the vortices at rotor exit are predicted. A formation mechanism is proposed whereby stator wake fluid with steep spanwise gradients of absolute total pressure is responsible for all but one of the rotor exit vortices. This mechanism is then verified computationally using a passive-scalar tracking technique. The predicted loss generation through the rotor row is then presented and a comparison made with a steady calculation where the inlet flow has been mixed out to pitchwise uniformity. The loss produced in the steady simulation, even allowing for the mixing loss at inlet, is 10% less than that produced in the unsteady simulation. This difference highlights the importance of the time-accurate calculation as a tool of the turbomachine designer.


Sign in / Sign up

Export Citation Format

Share Document