On the Effect of External Bending Loads in Bolted Flange Joints

2008 ◽  
Vol 131 (2) ◽  
Author(s):  
Abdel-Hakim Bouzid

Most current flange design methods use an equivalent pressure to treat bolted flange connections subjected to external bending loads. This oversimplified approach together with the lack of a proper assessment of the actual affected tightness make these methods inadequate for modern flange design. The substitution of the external applied moment by an equivalent pressure is excessively conservative and not realistic since it assumes that the achieved tightness is that of a gasket unloaded entirely to a minimum stress whereas in reality only a small section of it is, the rest of it is actually at a much higher stress. The successfulness of a valid analytical approach in yielding to an acceptable solution resides in its ability to account for the circumferential distribution of the gasket contact stress and its effect on leakage. This paper presents an analytical model based on the flexibility of the flange to treat flanges subjected to bending loads such as those produced by external moments and misalignments and capable of integrating leakage around the gasket circumference. The bolted joint sealing performance in the presence of such loads is evaluated using the new Pressure Vessel Research Council (PVRC) gasket constants Gb, a, and Gs, obtained from room temperature tightness (ROTT) tests. The analytical results including leakage predictions are validated by comparison to those obtained numerically by finite element analysis and experimentally on different size flanges. The overconservatism of the equivalent pressure is demonstrated.

Author(s):  
Abdel-Hakim Bouzid ◽  
Yves Birembaut ◽  
Hubert Lejeune

Most current flange design methods use an equivalent pressure to treat bolted flange connections subjected to external bending loads. This oversimplified approach together with the lack of a proper assessment of the actual affected tightness make these methods inadequate for modern flange design. The substitution of the external applied moment by an equivalent pressure is excessively conservative and not realistic since it assumes that the achieved tightness is that of a gasket unloaded entirely to a minimum stress whereas in reality only a small section of it is, the rest of it is actually at a much higher stress. The successfulness of a valid analytical approach in yielding to an acceptable solution resides in its ability to account for the circumferential distribution of the gasket contact stress and its effect on leakage. This paper presents an analytical model based on the flexibility of the flange to treat flanges subjected to bending loads such as those produced by external moments and misalignments and capable of integrating leakage around the gasket circumference. The bolted joint sealing performance in the presence of such loads is evaluated using the new PVRC gasket constants Gb, a and Gs obtained from ROTT tests. The analytical results including leakage predictions are validated by comparison to those obtained numerically by FEA and experimentally on different size flanges. The over-conservatism of the equivalent pressure is demonstrated.


Author(s):  
Benben Ma ◽  
Yichao Zhu ◽  
Fan Jin ◽  
Quan Ding ◽  
Xu Guo

The lightweight optimal design of bolted flange joint system without gaskets is still a challenging problem, mainly owing to two issues: the relatively large number of mutually dependent geometric design parameters and the complicated role played by the contact details between members. With these two issues properly addressed, this article aims for devising a concise formulation for lightweight optimal design of bolted joint systems without gaskets. After a systematic examination of the correlations between design parameters, the total number of free design variables is reduced to three: member thickness, bolt spacing, and bolt specification, respectively. Besides, a finite element analysis that can resolve more contact details between members is conducted, and the influencing factors on the pressure distribution at the member surface are thus identified, with a criterion for the system sealing failure incorporated. Based on the findings in this work, a novel design scheme for the joint system is proposed, and good agreement between our predictions and results obtained by a full three-dimensional finite element analysis is shown. The proposed approach can be used to optimize the design parameters of bolted joint systems considering sealing performance without heavy finite element computation and can find applications in many relevant engineering fields.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Zhijun Wu ◽  
Sayed A. Nassar ◽  
Xianjie Yang

A bolted flange may be subjected to the axial tensile, torsional, and bending external loads in service. The axial tensile, torsional, and bending resistance of the bolted flange is vital for the system vibration, dynamic strength, and reliability. This paper investigates the nonlinear deformation behavior of bolted flanges under tensile, torsional, and bending loads, using finite element analysis (FEA). Even though the bolted flange materials may still deform elastically, the variation in contact area due to the external loading may still cause nonlinear deformation of the flanges. In this study, finite element simulation is used for investigating the respective nonlinear deformation behavior of a preloaded bolted flange under tensile, torsional, and bending loads, and to determine the corresponding stiffness values for each loading.


Author(s):  
Zhijun Wu ◽  
Sayed A. Nassar ◽  
Xianjie Yang

This paper investigates the nonlinear deformation behavior of bolted flanges under tensile, torsional and bending loads, using Finite Element Analysis (FEA). Even though the bolted flange may still deform elastically, the variation in contact area due to the external loading will cause nonlinear deformation. In this study, finite element simulation is used for investigating the respective non-linear deformation behavior of a preloaded bolted flange under tensile, torsional and bending loads, and to determine the corresponding stiffness values for each loading.


Author(s):  
Bharat Batra

A large rectangular flange (5’ wide × 12.5’ Long) was designed using finite element analysis for a horizontal mixer vessel. The mixer vessel contained a large horizontal agitator with the shaft protruding through the two flat ends of the vessel. The horizontal vessel was split in the middle horizontal plane creating a large rectangular opening to be sealed by the two large rectangular flanges. The size of the flange, the type of gasket, the bolt preload required to obtain a reasonable seal made it a design challenge to design this bolted flange assembly. To start with, an estimate was made based on the calculation of the thickness of the flange using an equivalent circular flange. The finite element analysis of the whole assembly was preformed using the FEA software ANSYS. After several iterations, an acceptable solution was found with acceptable flange and bolt stresses. The seating stress in the gasket was also above the recommended gasket seating stress. Thus, the flanged joint was designed to be in compliance with ASME B&PV Code, Section VIII, Div-1. The vessel and the bolted flange assembly was successfully fabricated and hydrotested based on this design and it is successfully operating in the field.


Author(s):  
David Fuenmayor ◽  
Rolf Wink

The design-by-formula methodology used by the ASME Code for bolted-flange joints offers no guidance for the determination of flange stresses for high-pressure applications. More specifically, it offers no guidance for bolted joint connections using lens ring gaskets. The Taylor Forge Method adopted by the Code in Appendix 2 of Division 1 and Paragraph 4.16 of Division 2 has well known limitations, most notably: (a) the joint elements are modeled using simplified plate and shell theory and neglecting pressure inflation effects, (b) the nozzle-neck axial pressure stress is omitted in the calculation of the longitudinal hub stress, and (c) the pressure end load HD is assumed to act through the mid-thickness of the large end of the hub. In addition, the so called maintenance factor m, and the design seating stress y, are not defined for this type of partially self-sealing gasket. Lens ring gaskets are line contact seals based on the unsupported area principle. According to this principle, the internal pressure acting on the uncompensated lateral surface forces the lens towards the edge of the cone increasing the load on its sealing surfaces. The calculation of the forces and moment exerted on the flange as a result of this loading is also not considered in the methodology used by the ASME Code. In this article a study of the state of stresses for High Pressure Bolted Joint Flanges with Lens Ring Gaskets is carried out by means of Finite Element Analysis. The results of the numerical analysis are compared to those obtained by applying the formulae in Appendix 2 of ASME VIII Division 1 in order to determine to which extent these analytical expressions can be used while preserving the safety margins seen for regular flanges.


Author(s):  
Jason Deadman

Micrographic inspection, acceleration tests, Finite Element Analysis and detailed fatigue failure calculations for combined static and dynamic loadings, were used in determining the cause of failure, and an acceptable repair solution, for a critical bolted joint. The bolted joint holds together the piston and ram within a hydraulic press. The press had been in operation for eleven years when the failure occurred. As the press is used in a critical process operation, a repair solution and future maintenance strategy was required that would minimize the possibility of future failures and permit maintenance during planned outages. This paper discusses the method that was followed to arrive at an acceptable solution.


2014 ◽  
Vol 15 (2) ◽  
Author(s):  
Muhammad Abid ◽  
Javed A Chattha ◽  
Kamran A Khan ◽  
Hafiz A Wajid

ABSTRACT: This paper aims at finding the leak rate through ANSI class#150 flange joints using compressed asbestos sheet gasket under combined structural and thermal transient loading conditions. The solution is obtained using two different leak rate models and two different bolt up values. The gasket compressive strain based model employs strains that are determined using finite element analysis. The other model is based on the porous media theory in which gasket is considered as porous media. Leak rates determined using these leak rate models are compared for different tightness classes and discussed. ABSTRAK: Kajian bertujuan mencari kadar bocor menerusi sambungan bebibir kelas ANSI#150 menggunakan gasket kepingan asbestos termampat di bawah kondisi bebanan gabungan struktur dan terma fana. Solusinya diperolehi dengan menggunakan dua model kadar bocor yang berbeza dan dua nilai atas bolt yang berlainan. Model terikan berasaskan pemampat gasket menggunakan terikan yang ditentukan dengan analisis unsur terhingga. Model yang lainnya berasaskan teori bahantara berongga di mana gasket digunakan sebagai medium. Kadar bocor ditentukan dengan menggunakan model kadar bocor, yang kemudiannya dibandingkan pada kelas keketatan yang berbeza dan keputusannya dibincangkan.KEYWORDS: bolted flange; gasket; leak rate; finite element analysis; tightness class compressive strains; porous media


Author(s):  
Koji Kondo ◽  
Toshiyuki Sawa

FEM calculations and leakage experiments are carried out for bolted flanged connections with metal flat gaskets. It is found that the sealing performance of bolted flanged connections with raised face metal gaskets under internal pressure is improved significantly when the contact gasket stress reaches the gasket yield stress. In our FEM calculations it is demonstrated that the contact gasket stress at the outside diameter is bigger than that at the inside diameter due to the flange rotation. It is also found from the leakage test results and the FEM calculations that the sealing performance of the bolted flange connections with metal flat gasket is better than that of the metal gasket in platen device tests,. In addition, the contact stress in the joints with RTJ (ring type joint) gasket is examined and 4 stress peaks on the oval type and 8 peaks on the octagonal type are found. From the obtained results, a method for determining the bolt preloads in the bolted joints using flat metal gaskets and RTJ gaskets under internal pressure is proposed taking account the given allowable leak rate. Finally, the leak rates for bolted flanged connections tightened under internal pressure are compared with the experimental results. The new method can be proposed for determining the bolt preload for bolted flange connections with metal gaskets under internal pressure at room temperature.


Sign in / Sign up

Export Citation Format

Share Document