A lightweight optimal design model for bolted flange joints without gaskets considering its sealing performance

Author(s):  
Benben Ma ◽  
Yichao Zhu ◽  
Fan Jin ◽  
Quan Ding ◽  
Xu Guo

The lightweight optimal design of bolted flange joint system without gaskets is still a challenging problem, mainly owing to two issues: the relatively large number of mutually dependent geometric design parameters and the complicated role played by the contact details between members. With these two issues properly addressed, this article aims for devising a concise formulation for lightweight optimal design of bolted joint systems without gaskets. After a systematic examination of the correlations between design parameters, the total number of free design variables is reduced to three: member thickness, bolt spacing, and bolt specification, respectively. Besides, a finite element analysis that can resolve more contact details between members is conducted, and the influencing factors on the pressure distribution at the member surface are thus identified, with a criterion for the system sealing failure incorporated. Based on the findings in this work, a novel design scheme for the joint system is proposed, and good agreement between our predictions and results obtained by a full three-dimensional finite element analysis is shown. The proposed approach can be used to optimize the design parameters of bolted joint systems considering sealing performance without heavy finite element computation and can find applications in many relevant engineering fields.

2018 ◽  
Vol 167 ◽  
pp. 02017
Author(s):  
Yunsik Yang ◽  
Euy Sik Jeon ◽  
Dae Ho Park

Several studies have been conducted to prevent neck injury in rear-end collision. The headrest of the seat which suppresses the relative motion of the head and the torso can suppress the extension of the head, thereby alleviating the injury. The active headrest has a mechanism that supports the head by deploying the headrest at the rear-end collision. The spring remains compressed or twisted until a collision signal is generated and the headrest is deployed after the collision signal. Depending on the shape and deployment structure of the spring, a spring design with a high resilience that is acceptable to the headrest is required. In this paper, design parameter of spiral spring suitable for the structure of the developed headrest is selected, prototypes are fabricated, and development parameters such as development time and development distance are checked and optimal design parameters of the spiral spring are derived. The feasibility of the headrest with the designed spiral spring was verified by the finite element analysis.


2012 ◽  
Vol 215-216 ◽  
pp. 847-850
Author(s):  
Shou Jun Wang ◽  
Xing Xiong ◽  
Hong Jie Wang

In the condition of alternating impact ,the nut-supports subassembly is analyzed according to uncertainty of design parameters. Firstly, a three-dimensional (3-D) finite element (FE) model of the nut-supports subassembly is built and is meshed,and the constraints and loads are imposed.Secondly,the model of nut-supports was assembled using the software ANSYS to understand the stress distribution and various parts of the deformation of the nut-supports and its weak links in the harmonic forces.Finally,socket head cap screw has not enough pre-load in the condition of alternating impact and will be simplified.It is analyzed and checked whether it is cut or not; which provides the reference data for design and optimization of the wave maker.


Author(s):  
Dianyin Hu ◽  
Rongqiao Wang ◽  
Quanbin Ren ◽  
Jie Hong

First, this paper established the seal structural 2D axisymmetric model of a certain Solid Rocket Booster (SRB) and calculated the deformation and stresses at ignition through a large displacement, incompressible, contact finite element analysis. The results show that the maximum contact stress appears at the contact area and the maximum shear stress at groove notch. Then, some typical parameters of the seal structure which might have the impact on the sealing performance, such as the gap breadth, initial compressibility, fillets of the groove notch and bottom, groove width, were analyzed. We can find that the gap breadth and initial compressibility do great contributions to the maximum contact normal stress, and the groove notch and bottom fillets act upon the maximum shear stress obviously. In order to verify the validity of the 2D axisymmetric model, 3D structural finite element analysis of the structure was conducted, and the results indicate that in service, the upper flange is inclined relative to the nether flange, which seems to mean that the gap breadth can not be considered as a constant during the 2D axisymmetric analysis. However further calculations say that if using the minimum gap breadth gotten in 3D analysis as its constant gap value, the above 2D axisymmetric model can rationally take the place of 3D model to analyze the sealing performance. Finally, the failure modes & criteria of the O-ring seals based on the maximum contact normal stress and shear stress were determined to ensure the reliability of this structure.


2010 ◽  
Vol 118-120 ◽  
pp. 147-150
Author(s):  
Da Zhao Yu ◽  
Yue Liang Chen ◽  
Yong Gao ◽  
Wen Lin Liu ◽  
Zhong Hu Jia

Three-dimensional finite element model of a cracked bolted joint has been developed in the non-linear finite element code MSC.Marc and attempts were made to validate it by comparing results with those of experiments and other finite element. Issues in modeling the contact between the joint parts, which affect the accuracy and efficiency of the model, were presented. Experimental measurements of load transfer were compared with results from finite element analysis. The results show that three-dimensional finite element model of cracked bolted joint can produce results in close agreement with experiment. Three-dimensional effects such as bolt titling, seconding and through-thickness variations in stress and strain are well represented by such models. Three-dimensional finite element analysis was also used to study the effects of hole mod and crack on the load transfer behaviour of single lap bolted joints. The results show that hole mode has big effect on load transfer of cracked bolted joint. In the whole progress of crack growth, the load transfer through bolt 1 decrease, and almost all of the load duduction of bolt 1 transfer into blot 2 rather than into bolt 3.


Aero Gas Turbine engines power aircrafts for civil transport application as well as for military fighter jets. Jet pipe casing assembly is one of the critical components of such an Aero Gas Turbine engine. The objective of the casing is to carry out the required aerodynamic performance with a simultaneous structural performance. The Jet pipe casing assembly located in the rear end of the engine would, in case of fighter jet, consist of an After Burner also called as reheater which is used for thrust augmentation to meet the critical additional thrust requirement as demanded by the combat environment in the war field. The combustion volume for the After burner operation together with the aerodynamic conditions in terms of pressure, temperature and optimum air velocity is provided by the Jet pipe casing. While meeting the aerodynamic requirements, the casing is also expected to meet the structural requirements. The casing carries a Convergent-Divergent Nozzle in the downstream side (at the rear end) and in the upstream side the casing is attached with a rear mount ring which is an interface between engine and the airframe. The mechanical design parameters involving Strength reserve factors, Fatigue Life, Natural Frequencies along with buckling strength margins are assessed while the Jet pipe casing delivers the aerodynamic outputs during the engine operation. A three dimensional non linear Finite Element analysis of the Jet pipe casing assembly is carried out, considering the up & down stream aerodynamics together with the mechanical boundary conditions in order to assess the Mechanical design parameters.


2010 ◽  
Vol 26-28 ◽  
pp. 1168-1171
Author(s):  
Bin Wu ◽  
Tao Wang ◽  
Chao Xu ◽  
Bing Xu

Only a limited number of experimental and analysis reports exist concerning bolted flange connections under bending loading. In order to investigate the complex nonlinear phenomena, three dimensional elasto-plastic finite element analyses are performed. In those analyses, frictional contact model with small sliding option is applied between contacting pair surfaces of all connecting elements. Bolt pretension force is introduced in the initial step of analysis. From this study, the following results are obtainted:1) proposed finite element analysis method can be applicable to estimate complex nonlinear behavior of bolted flange type connections; 2) There is a sharp change in bending stiffness during loading, and lateral slip between two jointed flanges cause the bolt to carry shear load. The design of bolted joints should consider the interaction among cylinders, flanges and bolts.


2010 ◽  
Vol 97-101 ◽  
pp. 3924-3927 ◽  
Author(s):  
Da Zhao Yu ◽  
Yue Liang Chen ◽  
Zhong Hu Jia ◽  
Yong Gao ◽  
Wen Lin Liu

Three-dimensional finite element model of a bolted joint has been developed in the non-linear finite element code MSC.Marc and attempts were made to validate it by comparing results with those of experiments and other finite element. Issues in modeling the contact between the joint parts, which affect the accuracy and efficiency of the model, were presented. Experimental measurements of surface strains and load transfer ratio(LTR) were compared with results from finite element analysis. The results show that three-dimensional finite element model of bolted joint can produce results in close agreement with experiment. Three-dimensional effects such as bolt titling, seconding and through-thickness variations in stress and strain are well represented by such models. Three-dimensional finite element analysis was also used to study the effects of different parameters on the mechanical behaviour of single lap bolted joints. The results show that straight hole, small bolt diameter, and big hole pitch are selected first for bolted joint if other conditions allowed, and effect of bolt material on LTR of joint is small for small load. Interference and pre-stress should be strictly controlled for bolted joints in order to attain the best fatigue capability of lap joint.


2014 ◽  
Vol 915-916 ◽  
pp. 244-247
Author(s):  
Kai Liu ◽  
Ming Jiang ◽  
Fei Peng

Three dimensional models and finite element models of conductor clamps are built in software Solidworks and Abaqus. Different forces are loaded on finite element model of conductor clamps to obtain distributions of stress and displacement. Optimal design of conductor clamps is performed with finite element analysis and field test data. The results show that optimal design scheme achieves optimal target.


2014 ◽  
Vol 15 (2) ◽  
Author(s):  
Muhammad Abid ◽  
Javed A Chattha ◽  
Kamran A Khan ◽  
Hafiz A Wajid

ABSTRACT: This paper aims at finding the leak rate through ANSI class#150 flange joints using compressed asbestos sheet gasket under combined structural and thermal transient loading conditions. The solution is obtained using two different leak rate models and two different bolt up values. The gasket compressive strain based model employs strains that are determined using finite element analysis. The other model is based on the porous media theory in which gasket is considered as porous media. Leak rates determined using these leak rate models are compared for different tightness classes and discussed. ABSTRAK: Kajian bertujuan mencari kadar bocor menerusi sambungan bebibir kelas ANSI#150 menggunakan gasket kepingan asbestos termampat di bawah kondisi bebanan gabungan struktur dan terma fana. Solusinya diperolehi dengan menggunakan dua model kadar bocor yang berbeza dan dua nilai atas bolt yang berlainan. Model terikan berasaskan pemampat gasket menggunakan terikan yang ditentukan dengan analisis unsur terhingga. Model yang lainnya berasaskan teori bahantara berongga di mana gasket digunakan sebagai medium. Kadar bocor ditentukan dengan menggunakan model kadar bocor, yang kemudiannya dibandingkan pada kelas keketatan yang berbeza dan keputusannya dibincangkan.KEYWORDS: bolted flange; gasket; leak rate; finite element analysis; tightness class compressive strains; porous media


Sign in / Sign up

Export Citation Format

Share Document