Analytical Modeling of Hydraulically Expanded Tube-To-Tubesheet Joints

2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Nor Eddine Laghzale ◽  
Abdel-Hakim Bouzid

The loss of the initial tightness during service is one of the major causes of failure of tube-to-tubesheet joints. The initial residual contact pressure and its variation during the lifetime of the joint are among the parameters to blame. A reliable assessment of the initial contact pressure value requires accurate and rigorous modeling of the elastoplastic behavior of the tube and the tubesheet during the expansion process. This paper deals with the development of a new analytical model used to accurately predict the residual contact pressure resulting from a hydraulic expansion process. The analytical model is based on the elastic perfectly plastic material behavior of the tube and the tubesheet and the interaction between these two elements of the expanded joint. The model results have been compared and validated with those of the more accurate finite element analysis models. Additional comparisons have been made with existing methods.

Author(s):  
Nor Eddine Laghzale ◽  
Abdel-Hakim Bouzid

The loss of the initial tightness during service is one of the major causes of failure of tube-to-tubesheet joints. The initial residual contact pressure and its variation during the lifetime of the joint is among the parameters to blame. A reliable assessment of the initial contact pressure value requires accurate and rigorous modeling of the elasto-plastic behavior of the tube and the tubesheet during the expansion process. This paper deals with the development of a new analytical model used to accurately predict the residual contact pressure resulting from a hydraulic expansion process. It is based on the elastic perfectly plastic material behavior of the tube and the tubesheet and the interaction between them. The model results have been compared and validated with those of the more accurate numerical FEA models. Additional comparisons have been made with existing methods.


Author(s):  
Abdel-Hakim Bouzid ◽  
Mohammad Pourreza

The rigorous analysis of tube-to-tubesheet joints requires a particular attention to the transition zone of the expanded tube because of its impact on joint integrity. This transition zone is the weakest part of the joint due to the presence of high tensile residual stresses produced during the expansion process which coupled to other in-service loadings and harsh corrosive fluids results in joint failure. In fact, this zone is often subjected to stress corrosion cracking caused by intergranular attack leading to plant shutdown. Therefore, the evaluation of the residual stresses in the transition zone is of major concern during the design phase and its accurate assessment is necessary in order to achieve a reliable joint in service. In this study, a new analytical model to evaluate the residual axial and hoop stresses in the transition zone of hydraulically expanded tubes based on an elastic perfectly plastic material behavior has been developed. The model is capable of predicting the stress state under the maximum expansion pressure and after the expansion process has been completed. Three main regions are identified in the transition zone: the fully plastic region, the partially plastic region and the elastic region. Therefore, various theories have been applied to analyze the stresses and deformations neglecting the partial plastic region because of simplicity. The validation of analytical model is conducted by comparison of the results with the ones of 3D finite element models representing typical geometry and mechanical properties. The effect of reverse yielding of the expansion zone is also investigated.


1991 ◽  
Vol 113 (1) ◽  
pp. 93-101 ◽  
Author(s):  
S. M. Kulkarni ◽  
C. A. Rubin ◽  
G. T. Hahn

The present paper, describes a transient translating elasto-plastic thermo-mechanical finite element model to study 2-D frictional rolling contact. Frictional two-dimensional contact is simulated by repeatedly translating a non-uniform thermo-mechanical distribution across the surface of an elasto-plastic half space. The half space is represented by a two dimensional finite element mesh with appropriate boundaries. Calculations are for an elastic-perfectly plastic material and the selected thermo-physical properties are assumed to be temperature independent. The paper presents temperature variations, stress and plastic strain distributions and deformations. Residual tensile stresses are observed. The magnitude and depth of these stresses depends on 1) the temperature gradients and 2) the magnitudes of the normal and tangential tractions.


2000 ◽  
Author(s):  
Bhavani V. Sankar ◽  
Manickam Narayanan ◽  
Abhinav Sharma

Abstract Nonlinear finite element analysis was used to simulate compression tests on sandwich composites containing debonded face sheets. The core was modeled as an elastic-perfectly-plastic material, and the face-sheet as elastic isotropic. The effects of core plasticity, face-sheet and core thickness, and debond length on the maximum load the beam can carry were studied. The results indicate that the core plasticity is an important factor that determines the maximum load.


2012 ◽  
Vol 21 (1-2) ◽  
pp. 37-39
Author(s):  
David J. Unger

AbstractA finite element analysis indicates a good correlation between the Dugdale plastic strip model and a linear elastic/perfectly plastic material under plane stress loading conditions for a flow theory of plasticity based on the Tresca yield condition. A similar analysis under the von Mises yield condition reveals no plastic strip formation.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
S. L. Mahmood ◽  
R. Adibi-Asl ◽  
C. G. Daley

Simplified limit analysis techniques have already been employed for limit load estimation on the basis of linear elastic finite element analysis (FEA) assuming elastic-perfectly-plastic material model. Due to strain hardening, a component or a structure can store supplementary strain energy and hence carries additional load. In this paper, an iterative elastic modulus adjustment scheme is developed in context of strain hardening material model utilizing the “strain energy density” theory. The proposed algorithm is then programmed into repeated elastic FEA and results from the numerical examples are compared with inelastic FEA results.


2021 ◽  
Vol 39 (3A) ◽  
pp. 426-439
Author(s):  
Saad A. Al-Taan ◽  
Ayad A. Abdul-Razzak

This paper presents a study on the behavior of fiber reinforced concrete slabsusing finite element analysis. A previously published finite element program is used for the nonlinear analysis by including the steel fiber concrete properties. Concrete is represented by degenerated quadratic thick shell element, which is the general shear deformable eight node serendipity element, and the thickness is divided into layers. An elastic perfectly plastic and strain hardening plasticity approach are used to model the compression behavior of concrete.The reinforcing bars were smeared within the concrete layers and assumed as either an elastic perfectly plastic material or as an elastic-plastic material with linear strain hardening. Cracks initiation is predicted using a tensile strength criterion. The tension stiffening effect of the steel fibers is simulated using a descending parabolic stress degradation function, which is based on the fracture energy concept. The effect of cracking in reducing the shear modulus and the compressive strength of concrete parallel to the crack direction is considered. The numerical results showedgood agreement with published experimental results for two fibrous reinforced concrete slabs.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Abdel-Hakim Bouzid ◽  
Mohammad Pourreza

The rigorous stress analysis of tube-to-tubesheet joints requires a particular attention to the transition zone of the expanded tube because of its impact on joint integrity. This zone is the weakest part of the joint due to the presence of high tensile residual stresses produced during the expansion process, which coupled to in-service loadings and harsh corrosive fluids results in joint failure. In fact, it is often subjected to stress corrosion cracking caused by intergranular attack leading to plant shutdown. Therefore, the evaluation of the residual stresses in this zone is of major interest during the design phase and its accurate assessment is necessary to achieve a reliable joint in service. In this study, an analytical model to evaluate the residual axial and hoop stresses in the transition zone of hydraulically expanded tubes based on an elastic perfectly plastic material behavior has been developed. The model is capable of predicting the stress state when maximum expansion pressure is applied and after its release. Three main regions are identified in the transition zone: the fully plastic region, the partially plastic region, and the elastic region. Therefore, various theories have been applied to analyze the stresses and deformations neglecting the elastoplastic region because of simplicity. The validation of analytical model is conducted by comparison of the results with those of 3D finite element models of two typical joints of different geometries and mechanical properties. The effect strain hardening and reverse yielding of the expansion zone are also investigated.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Nor Eddine Laghzale ◽  
Abdel-Hakim Bouzid

The mechanism of failure of tube-to-tubesheet joints is related to the level of stresses produced in the tube expansion and transition zones during the expansion process. Maintaining a lower bound limit of the initial residual contact pressure over the lifetime of the expanded joint is a key solution to a leak free joint. An accurate model that estimates these stresses can be a useful tool to the design engineer to select the proper material geometry combination in conjunction with the required expansion pressure. Most existing design calculations are based on an elastic perfectly plastic behavior of the expansion joint materials. The proposed model is based on a strain hardening with a bilinear material behavior of the tube and the tubesheet. The interaction of these two components is simulated during the whole process of the application of the expansion pressure. The effects of the gap and the material strain hardening are to be emphasized. The model results are validated and confronted against the more accurate numerical finite element analysis models. Additional comparisons have been made to existing methods.


2020 ◽  
Vol 57 (3) ◽  
pp. 448-452 ◽  
Author(s):  
A.S. Lees ◽  
J. Clausen

Conventional methods of characterizing the mechanical properties of soil and geogrid separately are not suited to multi-axial stabilizing geogrid that depends critically on the interaction between soil particles and geogrid. This has been overcome by testing the soil and geogrid product together as one composite material in large specimen triaxial compression tests and fitting a nonlinear failure envelope to the peak failure states. As such, the performance of stabilizing, multi-axial geogrid can be characterized in a measurable way. The failure envelope was adopted in a linear elastic – perfectly plastic constitutive model and implemented into finite element analysis, incorporating a linear variation of enhanced strength with distance from the geogrid plane. This was shown to produce reasonably accurate simulations of triaxial compression tests of both stabilized and nonstabilized specimens at all the confining stresses tested with one set of input parameters for the failure envelope and its variation with distance from the geogrid plane.


Sign in / Sign up

Export Citation Format

Share Document