Analytical Modeling of Hydraulically Expanded Tube-to-Tubesheet Joints

Author(s):  
Nor Eddine Laghzale ◽  
Abdel-Hakim Bouzid

The loss of the initial tightness during service is one of the major causes of failure of tube-to-tubesheet joints. The initial residual contact pressure and its variation during the lifetime of the joint is among the parameters to blame. A reliable assessment of the initial contact pressure value requires accurate and rigorous modeling of the elasto-plastic behavior of the tube and the tubesheet during the expansion process. This paper deals with the development of a new analytical model used to accurately predict the residual contact pressure resulting from a hydraulic expansion process. It is based on the elastic perfectly plastic material behavior of the tube and the tubesheet and the interaction between them. The model results have been compared and validated with those of the more accurate numerical FEA models. Additional comparisons have been made with existing methods.

2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Nor Eddine Laghzale ◽  
Abdel-Hakim Bouzid

The loss of the initial tightness during service is one of the major causes of failure of tube-to-tubesheet joints. The initial residual contact pressure and its variation during the lifetime of the joint are among the parameters to blame. A reliable assessment of the initial contact pressure value requires accurate and rigorous modeling of the elastoplastic behavior of the tube and the tubesheet during the expansion process. This paper deals with the development of a new analytical model used to accurately predict the residual contact pressure resulting from a hydraulic expansion process. The analytical model is based on the elastic perfectly plastic material behavior of the tube and the tubesheet and the interaction between these two elements of the expanded joint. The model results have been compared and validated with those of the more accurate finite element analysis models. Additional comparisons have been made with existing methods.


Author(s):  
Zijian Zhao ◽  
Abdel-Hakim Bouzid

Abstract SS316L finned tubes are becoming very popular in high-pressure gas exchangers and particularly in CO2 cooler applications. Due to the high-pressure requirement during operation, these tubes require an accurate residual stress evaluation during the expansion process. Indeed, die expansion of SS tubes creates not only high stresses when combined with operation stresses but also micro-cracks during expansion when the expansion process is not very well controlled. This research work aims at studying the elastic-plastic behavior and estimating the residual stress states by modeling the die expansion process. The stresses and deformations of the joint are analyzed numerically using the finite element method. The expansion and contraction process is modeled considering elastic-plastic material behavior for different die sizes. The maximum longitudinal, tangential and contact stresses are evaluated to verify the critical stress state of the joint during the expansion process. The importance of the material behavior in evaluating the residual stresses using kinematic and isotropic hardening is addressed.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Nor Eddine Laghzale ◽  
Abdel-Hakim Bouzid

The mechanism of failure of tube-to-tubesheet joints is related to the level of stresses produced in the tube expansion and transition zones during the expansion process. Maintaining a lower bound limit of the initial residual contact pressure over the lifetime of the expanded joint is a key solution to a leak free joint. An accurate model that estimates these stresses can be a useful tool to the design engineer to select the proper material geometry combination in conjunction with the required expansion pressure. Most existing design calculations are based on an elastic perfectly plastic behavior of the expansion joint materials. The proposed model is based on a strain hardening with a bilinear material behavior of the tube and the tubesheet. The interaction of these two components is simulated during the whole process of the application of the expansion pressure. The effects of the gap and the material strain hardening are to be emphasized. The model results are validated and confronted against the more accurate numerical finite element analysis models. Additional comparisons have been made to existing methods.


Author(s):  
Nor Eddine Laghzale ◽  
Abdel-Hakim Bouzid

The mechanism of failure of tube-to-tubesheet joints is related to the level of stresses produced in the tube expansion and transition zones during the expansion process. Maintaining a lower bound limit of the initial residual contact pressure over the lifetime of the expanded joint is a key solution to a leak free joint. An accurate model that estimates these stresses can be a useful tool to the design engineer to select the proper material geometry combination in conjunction with the required expansion pressure. Most existing design calculations are based on an elastic perfectly plastic behavior of the expansion joint materials. The proposed model is based on a strain hardening with a bilinear material behavior of the tube and the tubesheet. The interaction of these two components is simulated during the whole process of the application of the expansion pressure. The effects of the gap and the material strain hardening will be emphasized. The model results are validated and confronted against the more accurate numerical FEA models. Additional comparisons have been made to existing methods.


2011 ◽  
Vol 189-193 ◽  
pp. 1494-1497
Author(s):  
Wang Chen ◽  
Yin Pei Wang ◽  
Pei Ning Li ◽  
Chen Jin ◽  
Xiao Ming Sun

Elbow is a type of components widely used in a piping system, and so it is very important to know the plastic carrying capacity of elbow. In this study, the elastic-plastic behavior of elbows with various ratios of t/rm and relative bending radius R/rm were investigated in detail by using of three-dimensional (3D) non-linear finite element (FE) analyses, assuming elastic-perfectly-plastic material behaviour and taking geometric nonlinearity into account. The analyses indicated that elbow exhibited different behavior obviously at the elastic-plastic states subjected to In-Plane opening bending moment and closing bending moment. The closed form equations of elbow involving effect of tangent pipes were established.


Author(s):  
Abdel-Hakim Bouzid ◽  
Mohammad Pourreza

The rigorous analysis of tube-to-tubesheet joints requires a particular attention to the transition zone of the expanded tube because of its impact on joint integrity. This transition zone is the weakest part of the joint due to the presence of high tensile residual stresses produced during the expansion process which coupled to other in-service loadings and harsh corrosive fluids results in joint failure. In fact, this zone is often subjected to stress corrosion cracking caused by intergranular attack leading to plant shutdown. Therefore, the evaluation of the residual stresses in the transition zone is of major concern during the design phase and its accurate assessment is necessary in order to achieve a reliable joint in service. In this study, a new analytical model to evaluate the residual axial and hoop stresses in the transition zone of hydraulically expanded tubes based on an elastic perfectly plastic material behavior has been developed. The model is capable of predicting the stress state under the maximum expansion pressure and after the expansion process has been completed. Three main regions are identified in the transition zone: the fully plastic region, the partially plastic region and the elastic region. Therefore, various theories have been applied to analyze the stresses and deformations neglecting the partial plastic region because of simplicity. The validation of analytical model is conducted by comparison of the results with the ones of 3D finite element models representing typical geometry and mechanical properties. The effect of reverse yielding of the expansion zone is also investigated.


1993 ◽  
Vol 60 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Castrenze Polizzotto

For a structure of elastic perfectly plastic material subjected to a given cyclic (mechanical and/or kinematical) load and to a steady (mechanical) load, the conditions are established in which plastic shakedown cannot occur whatever the steady load, and thus the structure is safe against the alternating plasticity collapse. Static and kinematic theorems, analogous to those of classical shakedown theory, are presented.


1991 ◽  
Vol 113 (1) ◽  
pp. 93-101 ◽  
Author(s):  
S. M. Kulkarni ◽  
C. A. Rubin ◽  
G. T. Hahn

The present paper, describes a transient translating elasto-plastic thermo-mechanical finite element model to study 2-D frictional rolling contact. Frictional two-dimensional contact is simulated by repeatedly translating a non-uniform thermo-mechanical distribution across the surface of an elasto-plastic half space. The half space is represented by a two dimensional finite element mesh with appropriate boundaries. Calculations are for an elastic-perfectly plastic material and the selected thermo-physical properties are assumed to be temperature independent. The paper presents temperature variations, stress and plastic strain distributions and deformations. Residual tensile stresses are observed. The magnitude and depth of these stresses depends on 1) the temperature gradients and 2) the magnitudes of the normal and tangential tractions.


Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

A simplified technique for determining the shakedown limit load of a structure employing an elastic-perfectly-plastic material behavior was previously developed and successfully applied to a long radius 90-degree pipe bend. The pipe bend is subjected to constant internal pressure and cyclic bending. The cyclic bending includes three different loading patterns namely; in-plane closing, in-plane opening, and out-of-plane bending moment loadings. The simplified technique utilizes the finite element method and employs small displacement formulation to determine the shakedown limit load without performing lengthy time consuming full cyclic loading finite element simulations or conventional iterative elastic techniques. In the present paper, the simplified technique is further modified to handle structures employing elastic-plastic material behavior following the kinematic hardening rule. The shakedown limit load is determined through the calculation of residual stresses developed within the pipe bend structure accounting for the back stresses, determined from the kinematic hardening shift tensor, responsible for the translation of the yield surface. The outcomes of the simplified technique showed very good correlation with the results of full elastic-plastic cyclic loading finite element simulations. The shakedown limit moments output by the simplified technique are used to generate shakedown diagrams of the pipe bend for a spectrum of constant internal pressure magnitudes. The generated shakedown diagrams are compared with the ones previously generated employing an elastic-perfectly-plastic material behavior. These indicated conservative shakedown limit moments compared to the ones employing the kinematic hardening rule.


2009 ◽  
Vol 44 (6) ◽  
pp. 407-416 ◽  
Author(s):  
P J Budden ◽  
Y Lei

Limit loads for a thick-walled cylinder with an internal or external fully circumferential surface crack under pure axial load are derived on the basis of the von Mises yield criterion. The solutions reproduce the existing thin-walled solution when the ratio between the cylinder wall thickness and the inside radius tends to zero. The solutions are compared with published finite element limit load results for an elastic–perfectly plastic material. The comparison shows that the theoretical solutions are conservative and very close to the finite element data.


Sign in / Sign up

Export Citation Format

Share Document