Temperature and Water Vapor Pressure Effects on the Friction Coefficient of Hydrogenated Diamondlike Carbon Films

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Pamela L. Dickrell ◽  
N. Argibay ◽  
Osman L. Eryilmaz ◽  
Ali Erdemir ◽  
W. Gregory Sawyer

Microtribological measurements of a hydrogenated diamondlike carbon film in controlled gaseous environments show that water vapor plays a significant role in the friction coefficient. These experiments reveal an initial high friction transient behavior that does not reoccur even after extended periods of exposure to low partial pressures of H2O and O2. Experiments varying both water vapor pressure and sample temperature show trends of a decreasing friction coefficient as a function of both the decreasing water vapor pressure and the increasing substrate temperature. Theses trends are examined with regard to first order gas-surface interactions. Model fits give activation energies on the order of 40 kJ/mol, which is consistent with water vapor desorption.

Author(s):  
P. L. Dickrell ◽  
A. Erdemir ◽  
W. G. Sawyer

Microtribological measurements of near frictionless carbon (NFC) films in controlled gaseous environments show that water vapor plays a role in the friction coefficient. These experiments also show that the NFC films initially have high friction in argon, which then decreases. This high friction does not reform over extended periods of exposure to Ar and low partial pressures of H2O and O2. Tests varying water vapor pressure show that under certain humidity conditions the friction coefficient can increases to values seen after extended periods of environmental exposure.


Author(s):  
A. C. Faberge

Benzylamine tartrate (m.p. 63°C) seems to be a better and more convenient substrate for making carbon films than any of those previously proposed. Using it in the manner described, it is easy consistently to make batches of specimen grids as open as 200 mesh with no broken squares, and without individual handling of the grids. Benzylamine tartrate (hereafter called B.T.) is a viscous liquid when molten, which sets to a glass. Unlike polymeric substrates it does not swell before dissolving; such swelling of the substrate seems to be a principal cause of breakage of carbon film. Mass spectroscopic examination indicates a vapor pressure less than 10−9 Torr at room temperature.


Friction ◽  
2021 ◽  
Author(s):  
Zonglin Pan ◽  
Qinzhao Zhou ◽  
Pengfei Wang ◽  
Dongfeng Diao

AbstractReducing the friction force between the commercial archwire and bracket during the orthodontic treatment in general dental practice has attracted worldwide interest. An investigation on the friction and wear behaviors of the uncoated and carbon film coated stainless steel archwires running against stainless steel brackets was systematically conducted. The carbon films were prepared at substrate bias voltages from +5 to +50 V using an electron cyclotron resonance plasma sputtering system. With increasing substrate bias voltage, local microstructures of the carbon films evolved from amorphous carbon to graphene nanocrystallites. Both static and stable friction coefficients of the archwire-bracket contacts sliding in dry and wet (artificial saliva) conditions decreased with the deposition of carbon films on the archwires. Low friction coefficient of 0.12 was achieved in artificial saliva environment for the graphene sheets embedded carbon (GSEC) film coated archwire. Deterioration of the friction behavior of the GSEC film coated archwire occurred after immersion of the archwire in artificial saliva solution for different periods before friction test. However, moderate friction coefficient of less than 0.30 sustained after 30 days immersion periods. The low friction mechanism is clarified to be the formation of salivary adsorbed layer and graphene sheets containing tribofilm on the contact interfaces. The robust low friction and low wear performances of the GSEC film coated archwires make them good candidates for clinical orthodontic treatment applications.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 335-348
Author(s):  
YOUNES KHOSRAVI ◽  
HASAN LASHKARI ◽  
HOSEIN ASAKEREH

Recognitionanddetectionofclimaticparameters inhave animportant role inclimate change monitoring. In this study, the analysis of oneofthe most importantparameters, water vapor pressure (WVP), was investigated. For this purpose, two non-parametric techniques, Mann-Kendall and Sen's Slope Estimator, were used to analyze the WVP trend and to determine the magnitude of the trends, respectively. To analyze these tests, ground station observations [10 stations for period of 44 years (1967-2010)] and gridded data [pixels with the dimension of 9 × 9 km over a 30-year period (1981-2010)] in South and SouthwestofIran were used. By programming in MATLAB software, the monthly, seasonal and annual WVP time series were extracted and MK and Sen's slope estimator tests were done. The results of monthly MK test on ground station observations showed that the significant downward trends are more considerable than significant upward trends. It also showed that the WVP highest frequency was more in warm months, April to September and the highest frequency of significant trends slope was in February and May. The spatial distribution of MK test of monthly gridded WVP time series showed that the upward trends were detected mostly in western zone and near the Persian Gulf in August. On the other hand, the downward trends through months. The maximum and minimum values of positive trends slope occurred in warm months and cold months, respectively. The analysis of the MK test of the annual WVP time series indicated the upward significant trends in the southeast and southwest zones of study area.  


Sign in / Sign up

Export Citation Format

Share Document