sen’s slope
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 51)

H-INDEX

7
(FIVE YEARS 2)

Author(s):  
Vinh Vu Duy ◽  
Sylvain Ouillon ◽  
Hai Nguyen Minh

Based on the Mann-Kendall test and Sen’s slope method, this study investigates the monthly, seasonal, and annual sea surface temperature (SST) trends in the coastal area of Hai Phong (West of Tonkin Gulf) based on the measurements at Hon Dau Station from 1995 to 2020. The results show a sea surface warming trend of 0.02°C/year for the period 1995-2020 (significant level α = 0.1) and of 0.093°C/year for the period 2008-2020 (significant level α = 0.05). The monthly SSTs in June and September increased by 0.027°C/year and 0.036°C/year, respectively, for the period 1995-2020, and by 0.080°C/year and 0.047°C/year, respectively, for the period 2008-2020. SST trends in winter, summer, and other months were either different for the two periods or not significant enough. This may be due to the impact of ENSO, which caused interannual SST variability in the Hai Phong coastal with two intrinsic mode functions (IMF) signals a period of ~2 (IMF3) and ~5.2 years cycle (IMF4). A combination of these signals had a maximum correlation of 0.22 with ONI (Oceanic Niño Index) delayed by 8 months. ENSO events took ~8 months to affect SST at Hai Phong coastal area for 1995-2020 and caused a variation of SST within 1.2°C.


2021 ◽  
Author(s):  
Himanshu Bana ◽  
R. D Garg

Abstract The present research work conducts a seasonality and trend analysis of rainfall over the 8 districts of the Marathwada region India. The study is carried out for the last 39 years ranging from 1980 to 2018. The rainfall data analysed pertains to pre-monsoon season, monsoon season (Kharif), and annual. The trend has been estimated using Sen’s slope estimation process along with Mann-Kendal test. It was observed that the all the Eight districts of the region show a negative trend in the annual rainfall received. Nanded district showed the largest negative trend in the annual rainfall. Out of eight districts seven districts of the region show a decline in rainfall during the monsoon season. The district of Nanded showed largest decline in the rainfall received during monsoon season. The present research work concludes with discussion on possible causes of such estimated trends.


Author(s):  
Darshan Mehta ◽  
S. M. Yadav

Abstract Drought forecasting is being considered an important tool to help understand the rainfall pattern and climate change trend. Drought is a prolonged period of months or years in which an area, whether surface water or groundwater, becomes insufficient in its water supplies. Drought is considered as most difficult but least known environmental phenomenon, impacting more persons than any other. There are several indices used to classify droughts. For this study, precipitation-based drought indices are considered (i.e., SPI, RAI and Percentage Departure of Rainfall). The objective of the research is to examine and determine the possible rainfall trends over the Jalore district of South-West Rajasthan in Luni river basin. In this research, trend analysis using the rainfall data from the years 1901 to 2021 was carried out on monthly, seasonal and annual basis. To define the current trend path, the Mann-Kendall test and Sen's slope estimator test were used. In order to detect the trend and its change in magnitude over a particular period of time, Sen's slope estimator was used. During the southwest monsoon, declining rainfall leads to short-term meteorological droughts, which have severe effect on the agriculture sector and Jalore district's water supplies, while rising rainfall during other seasons tends to mitigate the severity of drought. The result of research reveals that there is rise of pre-monsoon and post-monsoon rainfall, but it also depicts a fall in the annual rainfall which reflects in reduced Winter and S-W monsoon rainfall.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 335-348
Author(s):  
YOUNES KHOSRAVI ◽  
HASAN LASHKARI ◽  
HOSEIN ASAKEREH

Recognitionanddetectionofclimaticparameters inhave animportant role inclimate change monitoring. In this study, the analysis of oneofthe most importantparameters, water vapor pressure (WVP), was investigated. For this purpose, two non-parametric techniques, Mann-Kendall and Sen's Slope Estimator, were used to analyze the WVP trend and to determine the magnitude of the trends, respectively. To analyze these tests, ground station observations [10 stations for period of 44 years (1967-2010)] and gridded data [pixels with the dimension of 9 × 9 km over a 30-year period (1981-2010)] in South and SouthwestofIran were used. By programming in MATLAB software, the monthly, seasonal and annual WVP time series were extracted and MK and Sen's slope estimator tests were done. The results of monthly MK test on ground station observations showed that the significant downward trends are more considerable than significant upward trends. It also showed that the WVP highest frequency was more in warm months, April to September and the highest frequency of significant trends slope was in February and May. The spatial distribution of MK test of monthly gridded WVP time series showed that the upward trends were detected mostly in western zone and near the Persian Gulf in August. On the other hand, the downward trends through months. The maximum and minimum values of positive trends slope occurred in warm months and cold months, respectively. The analysis of the MK test of the annual WVP time series indicated the upward significant trends in the southeast and southwest zones of study area.  


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 205-222 ◽  
Author(s):  
NEERAJ KUMAR ◽  
C. C. PANCHAL ◽  
S. K. CHANDRAWANSHI ◽  
J. D. THANKI

On the basis of past 115 years (1901-2015) rainfall data of five districts of south Gujarat, the Mann-Kendall trend, Sen’s slope and regression slope showed that annual and monsoon rainfall at Valsad, Dang and Surat shows the increasing trend while, that of Navsari and Bharuch districts are declining. The monsoon season (summer monsoon) rainfall variability of Valsad, Dang, Surat, Navsari and Bharuch districts was recorded is 30.1%, 30.9%, 35.9%. 33.3% and 38.6%. The high coefficient of variation (CV) denoted that the variability of rainfall is not equally distributed and the amount of rainfall is lowest. The Bharuch district the annual and monsoon CV per cent denoted that the variability of rainfall in both seasons are very high. Valsad was recorded lowest CV with highest rainfall while the data are represent that variability of rainfall which can varies Bharuch to Dang in different districts of south Gujarat. The data shows that Dang district comes under high rainfall and Bharuch under low rainfall on south Gujarat. A low standard deviation indicates that the data points tend to be close to the mean of the set, while a high standard deviation indicates that the data points are spread out over a wider range of values. Similarly high SD is reported at Dang district because of high range of rainfall and lowest SD is found at Bharuch district because of low rainfall variability. The rainfall distribution different season viz., pre monsoon, monsoon post monsoon and winter season, the highest present contribution of rainfall is observed during monsoon season followed by post monsoon in all the five districts of south Gujarat. Rainfall contribution during remaining months was less than one per cent. While month wise analysis shows during monsoon season highest rainfall per cent contribution to annual rainfall is in July followed by August and June months at all the five districts of south Gujarat.


Author(s):  
N. Navatha ◽  
G. Sreenivas ◽  
R. Umareddy

Aims: To investigate and assess the significance of the potential trend of two variables viz. rainfall, temperature in Jagtial district of Telangana state. Place and Duration of Study: Data of Daily rainfall and temperature data of 39 years (1980-2019) collected from the meteorological observatory at Regional Agricultural Research Station, Polasa, Jagtial. Methodology: In this study, trend analysis has been carried out on monthly, seasonal and annual basis using the data period between 1980 to 2019 for rainfall and temperature. Mann-Kendall test and Sen’s slope estimate test were applied to identify the existing trend direction and magnitude of change over time. Results: The rainfall seasonal trend analysis indicates that pre-monsoon, monsoon and post-monsoon and winter period showed a negative rainfall trend with z statistics of-1.47, -2.51, -0.55 and-1.38 respectively. However, the annual rainfall showed a negative trend with a z value of -2.53. In the case of Sen’s slope shows that negative trend in monthly, seasonal and annual rainfall.  But the significant rising trend of monthly, seasonal average temperature is noticed from 1980 onwards. The annual average maximum temperature in the Jagtial showed an increasing trend (Z value +5.03). An increasing trend in the all seasons will lead to increase in annual mean temperature. The results of minimum temperature shows a rising trend and falling trend observed Monthly. However annual mean minimum temperature in the Jagtial District showed an increasing trend (Z value 0.10). In the case of maximum temperature for the observed period, it showed rising trend (Sen's slope = 0.63) while the minimum temperature trend showed no trend (Sen's slope = 0.02). Conclusion: Time series was carried out using nonparametric M–K test and Sen's slope estimator, which are widely used tests for conducting trend analysis. Therefore, its take into think about the rainfall variability in particular and temperature variability in general of the area into their climate change adaptation approach.


2021 ◽  
Author(s):  
Abkar Ali Iraqi ◽  
AbdAlla Mohammed AbdAlla

Abstract Yemen is one of the Arab country that is vulnerable to climate changes, and this is clear from the indicators of impact on water resources, coastal zone environments, etc. This work focuses on studying the climatic variability at Hodeidah city-Yemen during the period between 1984 and 2019. This study aimed to characterize trends in mean monthly, seasonal and annual temperature. To attain these objectives the collected data were analyzed using both parametric (linear regression) and non-parametric (Mann–Kendall, Spearman and Sen's slope estimator tests) methods to detect the trend and the magnitudes of rates of changes of temperature over time. Analysis of data indicates clear climatic fluctuations of temperature. The annual means of temperature during the period of study were varied between 26.9°C and 30.1°C. The warmest years were observed during the more recent years of the study period ( 2005 to 2018). The increasing rate of annual temperature is about + 0.075°C /year, + 0.37°C/5year, + 0.75°C/decade ,+2.53°C, over the whole period of study(1985 to 2019), + 3.7°C/50 year and increase to + 4.85°C in 2050. On a monthly timescale, there are similar magnitudes of rates of change from December to September with highest rates in October and November. The results also showed that most months and seasons have significant positive trends in temperature and (Z-α/2) values of the MK Test > 1.96 and positive value of Sen’s slope estimator indicates significant an increasing trend towards warmer years. Anomalies of temperature confirm significant increasing trends towards warmer years (2000s to 2019).


2021 ◽  
Vol 893 (1) ◽  
pp. 012006
Author(s):  
F Aditya ◽  
E Gusmayanti ◽  
J Sudrajat

Abstract Climate change has been a prominent issue in the last decade. Climate change on a global scale does not necessarily have the same effect in different regions. Rainfall is a crucial weather element related to climate change. Rainfall trends analysis is an appropriate step in assessing the impact of climate change on water availability and food security. This study examines rainfall variations and changes at West Kalimantan, focusing on Mempawah and Kubu Raya from 2000-2019. The Mann-Kendall (MK) and Sen's Slope estimator test, which can determine rainfall variability and long-term monotonic trends, were utilized to analyze 12 rainfall stations. The findings revealed that the annual rainfall pattern prevailed in all locations. Mempawah region tends to experience a downward trend, while Kubu Raya had an upward trend. However, a significant trend (at 95% confidence level) was identified in Sungai Kunyit with a slope value of -33.20 mm/year. This trend indicates that Sungai Kunyit will become drier in the future. The results of monthly rainfall analysis showed that significant upward and downward trends were detected in eight locations. Rainfall trends indicate that climate change has occurred in this region.


Author(s):  
Minkyung Kim ◽  
Hyomin Park ◽  
Sangdon Lee

Expressways in Korea are high-speed traffic roads connecting important cities. Road infrastructure continues to expand to accommodate the increase in traffic volume associated with the growth of industry and tourism. Here, data on 36,863 roadkill events that occurred on expressway routes managed by the Korea Expressway Corporation between 2004 and 2019 were analyzed. Characterizing patterns of roadkill is important for prioritizing roadkill mitigation measures. We identified consistently increasing or decreasing trends using Mann–Kendall statistics and Sen’s slope. Roadkill was most common in Gangwon Province and was concentrated between May and June and between October and December. Water deer (Hydropotes inermis) was the most common road-killed species. The trend analysis revealed a statistically significant decline in Gangwon Province and a statistically significant increase in the Capital Area and Chungnam Province. There was a significant increase in wild boar (Sus scrofa) roadkill in the first and fourth quarters. Mitigation measures are needed for regions and species showing increasing trends, including water deer in the first to third quarters, periods for which no decline in water deer roadkill was noted.


2021 ◽  
Author(s):  
Abkar Ali Iraqi ◽  
AbdAlla Mohammed AbdAlla

Abstract Yemen is one of the Arab country that is vulnerable to climate changes, and this is clear from the indicators of impact on water resources, coastal zone environments, etc. This work focuses on studying the climatic variability at Hodeidah city-Yemen during the period between 1984 and 2019. This study aimed to characterize trends in mean monthly, seasonal and annual temperature. To attain these objectives the collected data were analyzed using both parametric (linear regression) and non-parametric (Mann–Kendall, Spearman and Sen's slope estimator tests) methods to detect the trend and the magnitudes of rates of changes of temperature over time. Analysis of data indicates clear climatic fluctuations of temperature. The annual means of temperature during the period of study were varied between 26.9°C and 30.1°C. The warmest years were observed during the more recent years of the study period ( 2005 to 2018). The increasing rate of annual temperature is about + 0.075°C /year, + 0.37°C/5year, + 0.75°C/decade ,+2.53°C, over the whole period of study(1985 to 2019), + 3.7°C/50 year and increase to + 4.85°C in 2050. On a monthly timescale, there are similar magnitudes of rates of change from December to September with highest rates in October and November. The results also showed that most months and seasons have significant positive trends in temperature and (Z-α/2) values of the MK Test > 1.96 and positive value of Sen’s slope estimator indicates significant an increasing trend towards warmer years. Anomalies of temperature confirm significant increasing trends towards warmer years (2000s to 2019).


Sign in / Sign up

Export Citation Format

Share Document