gas surface interactions
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 12)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
Christian Siemes ◽  
Stephen Maddox ◽  
Olivier Carraz ◽  
Trevor Cross ◽  
Steven George ◽  
...  

AbstractCold Atom technology has undergone rapid development in recent years and has been demonstrated in space in the form of cold atom scientific experiments and technology demonstrators, but has so far not been used as the fundamental sensor technology in a science mission. The European Space Agency therefore funded a 7-month project to define the CASPA-ADM mission concept, which serves to demonstrate cold-atom interferometer (CAI) accelerometer technology in space. To make the mission concept useful beyond the technology demonstration, it aims at providing observations of thermosphere mass density in the altitude region of 300–400 km, which is presently not well covered with observations by other missions. The goal for the accuracy of the thermosphere density observations is 1% of the signal, which will enable the study of gas–surface interactions as well as the observation of atmospheric waves. To reach this accuracy, the CAI accelerometer is complemented with a neutral mass spectrometer, ram wind sensor, and a star sensor. The neutral mass spectrometer data is considered valuable on its own since the last measurements of atmospheric composition and temperature in the targeted altitude range date back to 1980s. A multi-frequency GNSS receiver provides not only precise positions, but also thermosphere density observations with a lower resolution along the orbit, which can be used to validate the CAI accelerometer measurements. In this paper, we provide an overview of the mission concept and its objectives, the orbit selection, and derive first requirements for the scientific payload.


Chemosensors ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 270
Author(s):  
Stefan Kucharski ◽  
Chris Blackman

Historically, in gas sensing literature, the focus on “mechanisms” has been on oxygen species chemisorbed (ionosorbed) from the ambient atmosphere, but what these species actually represent and the location of the adsorption site on the surface of the solid are typically not well described. Recent advances in computational modelling and experimental surface science provide insights on the likely mechanism by which oxygen and other species interact with the surface of SnO2, providing insight into future directions for materials design and optimisation. This article reviews the proposed models of adsorption and reaction of oxygen on SnO2, including a summary of conventional evidence for oxygen ionosorption and recent operando spectroscopy studies of the atomistic interactions on the surface. The analysis is extended to include common target and interfering reducing gases, such as CO and H2, cross-interactions with H2O vapour, and NO2 as an example of an oxidising gas. We emphasise the importance of the surface oxygen vacancies as both the preferred adsorption site of many gases and in the self-doping mechanism of SnO2.


Author(s):  
Günther March ◽  
Jose van den IJssel ◽  
Christian Siemes ◽  
Pieter Visser ◽  
Eelco Doornbos ◽  
...  

The satellite acceleration data from the CHAMP, GRACE, GOCE , and Swarm missions provide detailed information on the thermosphere density over the last two decades. Recent work on reducing errors in the modelling of the spacecraft geometry has already greatly reduced scale differences between the thermosphere data sets from these missions. However, residual inconsistencies between the data sets and between data and models are still present. To a large extent, these differences originate in the modelling of the gas-surface interactions ( GSI ), which is part of the satellite aerodynamic modelling used in the acceleration to density data processing. Physics-based GSI models require in- situ atmospheric composition and temperature data that are not measured by any of the above-mentioned satellites and, as a consequence, rely on thermosphere models for these inputs. To reduce the dependence on existing thermosphere models, we choose in this work a GSI model with a constant energy accommodation coefficient per mission, which we optimize exploiting particular attitude manoeuvres and wind analyses to increase the self-consistency of the multi-mission thermosphere mass density data sets. We compare our results with those based on variable energy accommodation obtained by different studies and semi-empirical models to show the principal differences. The presented comparisons provide the novel opportunity to quantify the discrepancies between current GSI models. Among the presented data, density variations with variable accommodation are within +- 10 % and peaks can reach up to 15 % at the poles. The largest differences occur during low solar activity periods. In addition, we utilize a series of attitude manoeuvres performed in May 2014 by the Swarm A and C satellites, which are flying in close proximity, to evaluate the residual inconsistency of the density observations as a function of the energy accommodation coefficient. Our analysis demonstrates that an energy accommodation coefficient of 0.85 maximizes the consistency of the Swarm density observations during the attitude manoeuvres. Using such coefficient, for Swarm-A and Swarm-C the new density would be lower in magnitude with a 4-5 % difference. In recent studies, similar energy accommodation coefficients were retrieved for the CHAMP and GOCE missions through investigating thermospheric winds. These new values for the energy accommodation coefficient provide a higher consistency among different missions and models. A comparison of neutral densities between current thermosphere models and observations indicates that semi-empirical models such as NRLMSISE -00 and DTM -2013 significantly overestimate the density, and that an overall higher consistency between the observations from the different missions can be achieved with the presented assumptions. The new densities from this work provide consistencies of 4.13 \ % and 3.65 \ % between minimum and maximum mean ratios among the selected missions with NRLMSISE -00 and DTM -2013, respectively. A comparison with the WACCM -X general circulation model is also performed. Similarly to the other models, WACCM -X seems to provide higher estimates of mass density especially under high and moderate solar activities. This work has the objective to guide density data users over the multiple data sets and highlight the remaining uncertainties associated with different GSI models.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yosef Alkoby ◽  
Helen Chadwick ◽  
Oded Godsi ◽  
Hamza Labiad ◽  
Matthew Bergin ◽  
...  

2020 ◽  
Vol 53 (22) ◽  
pp. 224001 ◽  
Author(s):  
S Albertin ◽  
J Gustafson ◽  
J Zhou ◽  
S Pfaff ◽  
M Shipilin ◽  
...  

Carbon ◽  
2019 ◽  
Vol 150 ◽  
pp. 85-92 ◽  
Author(s):  
Vanessa J. Murray ◽  
Timothy K. Minton

2019 ◽  
Vol 64 (6) ◽  
pp. 1225-1242 ◽  
Author(s):  
G. March ◽  
T. Visser ◽  
P.N.A.M. Visser ◽  
E.N. Doornbos

2019 ◽  
Vol 12 (6) ◽  
pp. 3453-3461 ◽  
Author(s):  
Benjamin L. Deming ◽  
Demetrios Pagonis ◽  
Xiaoxi Liu ◽  
Douglas A. Day ◽  
Ranajit Talukdar ◽  
...  

Abstract. Losses of gas-phase compounds or delays on their transfer through tubing are important for atmospheric measurements and also provide a method to characterize and quantify gas–surface interactions. Here we expand recent results by comparing different types of Teflon and other polymer tubing, as well as glass, uncoated and coated stainless steel and aluminum, and other tubing materials by measuring the response to step increases and decreases in organic compound concentrations. All polymeric tubings showed absorptive partitioning behavior with no dependence on humidity or concentration, with PFA Teflon tubing performing best in our tests. Glass and uncoated and coated metal tubing showed very different phenomenology due to adsorptive partitioning to a finite number of surface sites. Strong dependencies on compound concentration, mixture composition, functional groups, humidity, and memory effects were observed for glass and uncoated and coated metals, which (except for Silonite-coated stainless steel) also always caused longer delays than Teflon for the compounds and concentrations tested. Delays for glass and uncoated and coated metal tubing were exacerbated at low relative humidity but reduced for RH >20 %. We find that conductive PFA and Silonite tubing perform best among the materials tested for gas-plus-particle sampling lines, combining reduced gas-phase delays with good particle transmission.


Sign in / Sign up

Export Citation Format

Share Document