pressure compensation
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 43)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Mohd Nazri Md Noor ◽  
Nabil Batita ◽  
Mohamed Gaby ◽  
Yoann Riou ◽  
Samuel Roselier ◽  
...  

Abstract Enhancing gas productivity is linked to multistage stimulation (MSS). Choosing a cemented over uncemented solution is driven by factors such as operational efficiency, drilling practices, and isolation techniques. Swellable and mechanical packers have been used widely. A new packer type, an expandable steel packer, has been qualified recently, the expandable steel packer combines the strengths of mechanical and swellable packers and will provide an option for openhole completions. The 4.5-in. expandable steel packer design was optimized to meet most demanding applications with the following characteristics: reduced running outside diameter (OD) to 5.6 in., premium assembly technique by crimping, double sleeve pressure self-compensation, and use of nickel alloys for sour environment. After the design of the packer was completed, the 4.5-in. expandable steel packer was qualified according to the API Spec 19OH (API 2018) standard protocol at 15,000 psi with thermal variation between 320°F and 68°F. The packer was tested in a casing with inside diameter (ID) of 6.5 in. The test casing had an ID of 6.5 in. whereas nominal hole size ranges from 5.875 in. to 6.125 in. It was chosen to simulate a washout and considering the calculated maximum expansion ratio for the steel to verify the 15,000-psi pressure rating capability. The test casing was built with a heat exchanger, high-pressure pump, and pressure and temperature sensors. The packer was expanded inside the dummy well with all the measuring instruments in place. Expansion pressure signatures were observed as predicted. The analysis of the packer setting pressure curves showed expansion initiation and full casing ID contact. The liquid differential pressure test from each side of the packer proved the internal pressure compensation performed as expected. No leak was observed during the pressure steps of 15.000 psi held for 15 minutes while cycling the temperature from 320°F to 68°F and back to 320°F. The expandable steel packer utilizes a unique double-sleeve system for self-pressure compensation during ball-drop stimulation operations. The packer expandable sleeve is protected during deployment by the end fittings. Expandable steel packers exhibit robustness during running in hole, enable setting on demand, have a high expansion ratio, require no de-rating vs. hole size, and have low sensitivity to thermal variations.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2493
Author(s):  
Hadi A. AL-agele ◽  
Hisham Jashami ◽  
Lloyd Nackley ◽  
Chad Higgins

A new Variable Rate Drip Irrigation (VRDI) emitter that monitors individual water drops was designed, built, and tested. This new emitter controllers water application directly by monitoring the volume applied in contrast to uniform drip irrigation systems that control water application indirectly by pressure compensation and operational times. Prior approaches assumed irrigation volumes based on flow rates and time and typically did not verify the applied amount of water applied at each water outlet. The new VRDI emitter self-monitors the total volume of water applied and halts the flow once the desired total water application has been achieved. This study performed a test for a new VRDI emitter design with two inner diameters of 0.11 cm and 0.12 cm and two outer diameters 0.3 cm and 0.35 cm compared to a commercial drip emitter. Laboratory tests verify that the integrated volume measurements of the VRDI system are independent of pressure. Conversely, the flow rates of the commercial pressure-compensated drip lines were not independent of pressure. These results demonstrate that this form of VRDI is technically feasible and is shown to be energy efficient, requiring lower system operating pressures than pressure-compensated lines. The VRDI system can reduce water consumption and related water costs.


2021 ◽  
Author(s):  
Bo Wang ◽  
Yunwei Li ◽  
Long Quan ◽  
Lianpeng Xia

Abstract There are the problems in the traditional pressure-compensation flow-control valve, such as low flow control accuracy, small flow control difficulty, and limited flow range. For this, a method of continuous control pressure drop Δprated (i.e. the pressure drop across the main throttling orifice) to control flow-control valve flow is proposed. The precise control of small flow is realized by reducing the pressure drop Δprated and the flow range is amplified by increasing pressure drop Δprated. At the same time, it can also compensate the flow force to improve the flow control accuracy by regulating the pressure drop Δprated. In the research, the flow-control valve with controllable pressure compensation capability (FVCP) was designed firstly and theoretically analyzed. Then the sub-model model of PPRV and the joint simulation model of the FVCP were established and verified through experiments. Finally, the continuous control characteristics of pressure drop Δprated, the flow characteristics, and flow force compensation were studied. The research results demonstrate that, compared with the traditional flow-control valve, the designed FVCP can adjust the compensation pressure difference in the range of 0∼3.4 MPa in real-time. And the flow rate can be altered within the range of 44%∼136% of the rated flow. By adjusting the compensation pressure difference to compensate the flow force, the flow control accuracy of the multi-way valve is improved, and the flow force compensation effect is obvious.


2021 ◽  
Author(s):  
Brede Andre Thorkildsen ◽  
Lachlan James McKenzie ◽  
Stein Følkner ◽  
Francois-Xavier Pasquet ◽  
Pierre-Jean Bibet

Abstract The development of Subsea Chemical Storage & Injection (SCS&I) technology is a continuation of the trend to move more of the hydrocarbon production systems subsea. This is driven by a need to make exploitation of remote resources profitable; unlock single-line long tie-backs and subsea to shore architectures, and to enable tie-ins with otherwise constrained topside infrastructure. The SCS&I System is also a significant contributor to the development of "All-Electric" subsea architecture where the umbilical is reduced to a power and communication cable only. TechnipFMC https://www.technipfmc.com/ and Total https://www.total.com/en are collaborating to develop and qualify the SCS&I technology components and system. In order to make the SCS&I technology competitive and field developments profitable, the reliability of the equipment is paramount. The HAMPRO 70V injection pump is one key component in the system for which high reliability must be ensured. The objective of the qualification program is to confirm the adequate performance of the HAMPRO 70V pump in the following areas: The reliability of the chemically exposed parts and the impact of chemical fluid cleanliness The reliability of the pump and motor rotating parts and the impact of lubricant performance The reliability of the electrical components The impact of transient behaviour on the pressure compensation system, rotating parts and electrical components Due to the similarity of design, smaller versions of the HAMPRO pump will also be qualified by the activities in the program.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 860
Author(s):  
Giuseppe Mandraffino ◽  
Alberto Lo Gullo ◽  
Maria Cinquegrani ◽  
Angela D’Ascola ◽  
Davide Sinicropi ◽  
...  

miR profile could be associated to CV risk, and also to prognosis/outcome in response to therapeutic approach. We aimed to evaluate if anti-hypertensive drugs enalapril, losartan or olmesartan have effects on monocyte miR profile in essential hypertensives without target organ involvement. For this purpose, 82 hypertensives and 49 controls were included; we evaluated SBP/DBP, lipid profile, glucose, CRP, fibrinogen, arterial stiffness indices (PWV; AIx), and cIMT at baseline (T0) and after 24 weeks of treatment (T1). Subjects with LDL-C ≥ 160 mg/dL, TG ≥ 200 mg/dL, BMI ≥ 30, and other additional CV risk factors were excluded. Patients who were prescribed to receive once-a-day enalapril 20 mg, losartan 100 mg or olmesartan 20 mg were eligible for the study. At T1, we found a significant improvement of SBP (−18.5%), DBP (−18%), HDL-C and LDL-C (+3% and −5.42%), glucose (−2.15%), BMI (−3.23%), fibrinogen (−11%), CRP (−17.5%,), AIx (−49.1%) PWV (−32.2%), and monocyte miR expression (miR-221: −28.4%; miR-222: −36%; miR-145: +41.7%) with respect to baseline. miR profile was compared to control subjects at baseline and at T1. We found some little difference in the behaviour of the three treatments on some variables: olmesartan was the most effective in reducing fibrinogen, DBP, CRP, and AIx (−13.1%, −19.3%, −21.4%, and −56.8%, respectively). Enalapril was the drug more significantly increasing the expression of miR-145. In conclusion, enalapril, losartan and olmesartan are effective in improving mechanical and humoral factors associated to AS and atherogenesis. These drugs appear to be able to modify miRs 221/222 and miR-145 expression in drug-naïve hypertensives, making it closer to that of control subjects; additionally, this provides a good blood pressure compensation, contributing to slow the progression of vascular damage.


Author(s):  
Jia-Bin Wu ◽  
Li Li ◽  
Wei Wei

The pressure compensator is an important equipment of the deep-sea hydraulic system to provide the functions of pressure and volume compensation. In this paper, the structure features and static force analysis of the pressure compensator are studied. The physical model of the pressure compensator is established, and its dynamic characteristics influenced by the ambient pressure, the compensated flow and the temperature change are all analyzed. The entire working process of the pressure compensator is then researched. Therefore, two design criteria for reliability and dynamic characteristics respectively are proposed. A pressure compensator for 6000 m deep in the sea was designed and manufactured. Simulations and high-pressure experiments of the designed pressure compensator were conducted. The results show that the dynamic response of the compensated pressure under each input is all composed of a ramp change, a step change and a damped oscillation. The effective area of the rolling diaphragm, the spring stiffness and the mass of the diaphragm-piston assembly are the key design parameters to ensure the reliability and good dynamic characteristics of the pressure compensator. Simulation and high-pressure experiments verified the volume and pressure compensation function of the pressure compensator in the deep-sea environment.


Sign in / Sign up

Export Citation Format

Share Document