Stress Concentrations in Cylindrically Orthotropic Composite Plates With a Circular Hole

1981 ◽  
Vol 48 (3) ◽  
pp. 563-569 ◽  
Author(s):  
N. J. Hoff

The equations governing the distribution of the stresses in a cylindrically orthotropic plate with a circular hole are solved for the case when the plate is subjected to uniform uniaxial traction. Closed-form solutions are given for the circumferential stresses along the edge of the hole.

2000 ◽  
Vol 67 (3) ◽  
pp. 527-539 ◽  
Author(s):  
S. M. Chern ◽  
M. E. Tuttle

The classical Savin solution for the stress induced in an orthotropic plate containing an elliptical hole places no restrictions on remote rigid-body rotations. In this paper the Savin procedure is used to obtain a solution for which remote rigid-body rotations are required to be zero. The validity of these new results is demonstrated by comparing predicted displacement fields near a circular hole in specially orthotropic composite panels with those measured using moire´ techniques as well as those predicted using the finite element method. [S0021-8936(00)01303-9]


2010 ◽  
Vol 10 (04) ◽  
pp. 761-778 ◽  
Author(s):  
CHRISTIAN MITTELSTEDT ◽  
KAI-UWE SCHRÖDER

In this paper, closed-form approximate solutions for the geometrically nonlinear behaviour of rectangular laminated plates with flexural orthotropy under longitudinal compression are presented. Based on the governing Marguerre-type differential equations postulated for imperfect plates, two plate configurations are discussed in detail, representing important application cases in practical engineering work. The first configuration is a laminated plate that is simply supported at all four edges (the so-called SSSS plate), while for the second configuration clamped unloaded longitudinal edges are considered (denoted as the SSCC plate). For both plate configurations, rather simple closed-form approximations in the form of trigonometric shape functions are employed for the description of the out-of-plane postbuckling plate deflections. Based on the chosen shape functions, the compatibility condition with respect to the in-plane strains is fulfilled exactly, while the out-of-plane equilibrium condition for a deflected plate element is not, but is solved using a Galerkin-type formulation instead. Eventually, very simple closed-form solutions for all postbuckling state variables (deflections, in-plane edge displacements, and effective widths) are derived that can be used very conveniently in engineering practice. The high accuracy of the presented analysis methods is established by comparison with the results of other authors.


2016 ◽  
Vol 16 (03) ◽  
pp. 1450112 ◽  
Author(s):  
Mehdi Bohlooly ◽  
Babak Mirzavand

A thermal buckling analysis is presented for simply-supported rectangular symmetric cross-ply laminated composite plates that are integrated with surface-mounted piezoelectric actuators and subjected to the combined action of thermal load and constant applied actuator voltage. The material properties of the composite and piezoelectric layers are assumed to be functions of temperature. Derivations of the equations are based on the classical laminated plate theory, using the von-Karman nonlinear kinematic relations. The Ritz method is adopted to obtain closed-form solutions for the critical buckling temperature. Numerical examples are presented to verify the proposed method. The effects of the applied actuator voltage, plate geometry and stacking sequence of laminates are investigated.


Author(s):  
MOON BANERJEE ◽  
N. K. JAIN ◽  
S. SANYAL

The present study brings out the thorough analysis of isotropic and orthotropic fixed rectangular plate with center circular hole under transverse static loading condition. In this paper influence of stress concentration and deflection due to singularity for isotropic and orthotropic composite materials under different parametric conditions is obtained. The effect of thickness -to- width of plate (T/A) and diameter-to-width (D/A) ratio upon stress concentration factor (SCF) for different stresses were studied. An isotropic and one composite material were considered for analysis to determine the variation of SCF with elastic constants. Deflection in transverse direction were calculated and analyzed. Results are presented in graphical form and discussed. Three-dimensional finite element models were created using ANSYS software. Results showed that maximum stress appear near the vicinity of the hole at the upper and lower portions of the plate. The effect of material properties, (E1/E2) on SCF for stresses along x, y and z axis is established thorough this analysis.


Sign in / Sign up

Export Citation Format

Share Document