scholarly journals Crack Paralleling an Interface Between Dissimilar Materials

1987 ◽  
Vol 54 (4) ◽  
pp. 828-832 ◽  
Author(s):  
J. W. Hutchinson ◽  
M. E. Mear ◽  
J. R. Rice

A crack paralleling a bonded plane interface between two dissimilar isotropic elastic solids is considered. When the distance of the crack from the interface is small compared to the crack length itself and to other length scales characterizing the geometry, a simple universal relation exists between the Mode I and Mode II stress intensity factors and the complex stress intensity factor associated with the corresponding problem for the crack lying on the interface. In other words, if the influence of external loading and geometry on the interface crack is known, then this information can immediately be used to generate the stress intensity factors for the sub-interface crack. Conditions for cracks to propagate near and parallel to, but not along, an interface are derived.

Author(s):  
Won-Keun Kim ◽  
Toru Ikeda ◽  
Noriyuki Miyazaki

Anisotropic Conductive Adhesive Film (ACF) has been used for electronic assemblies such as the connection between a Liquid Crystal Display (LCD) panel and a flexible print circuit board (FPC). ACF is expected to be a key technology for flip chip packaging and chip size packaging. The goal of our work is to provide an optimum design scheme to achieve the best combination of electrical performance and mechanical reliability for electronic packages using the ACF. This study presents an evaluation technology for the delamination of the ACF connections. We utilized the stress intensity factors of an interface crack between jointed dissimilar materials. The evaluation technology presented herein was found to provide reliability of an electronic package using the ACF connection during the solder reflow process.


1991 ◽  
Vol 58 (2) ◽  
pp. 428-434 ◽  
Author(s):  
H. A. Luo ◽  
Y. Chen

An arc-shaped crack in fiber-reinforced composite material is the subject of this paper. A three-phase composite cylinder is taken as the material model to take into account the effect of surrounding fibers. Using Muskhelishvili’s complex variable method, an exact elastic solution is derived based on the conventional crack opening assumption. The complex stress intensity factors for the interface crack, in the sense defined by Hutchinson, Mear, and Rice, are determined. Some numerical examples are given. It is shown that, as the volume concentration of the fiber is increased, the magnitude of the complex stress intensity factors varies considerably.


2005 ◽  
Author(s):  
Sridhar Santhanam

A method is presented here to extract stress intensity factors for interface cracks in plane bimaterial fracture problems. The method relies on considering a companion problem wherein a very thin elastic interlayer is artificially inserted between the two material regions of the original bimaterial problem. The crack in the companion problem is located in the middle of the interlayer with its tip located within the homogeneous interlayer material. When the thickness of the interlayer is small compared with the other length scales of the problem, a universal relation can be established between the actual interface stress intensity factors at the crack tip for the original problem and the mode I and II stress intensity factors associated with the companion problem. The universal relation is determined by formulating and solving a boundary value problem. This universal relation now allows the determination of the stress intensity factors for a generic plane interface crack problem as follows. For a given interface crack problem, the companion problem is formulated and solved using the finite element method. Mode I and II stress intensity factors are obtained using the modified virtual crack closure method. The universal relation is next used to obtain the corresponding interface stress intensity factors for the original interface crack problem. An example problem involving a finite interface crack between two semi-infinite blocks is considered for which analytical solutions exist. It is shown that the method described above provides very acceptable results.


1997 ◽  
Vol 119 (1) ◽  
pp. 74-82 ◽  
Author(s):  
A. Kiciak ◽  
G. Glinka ◽  
D. J. Burns

Mode I weight functions were derived for the deepest and surface points of an external radial-longitudinal semi-elliptical surface crack in a thick-walled cylinder with the ratio of the internal radius to wall thickness, Ri/t = 1.0. Coefficients of a general weight function were found using the method of two reference stress intensity factors for two independent stress distributions, and from properties of weight functions. Stress intensity factors calculated using the weight functions were compared to the finite element data for several different stress distributions and to the boundary element method results for the Lame´ hoop stress in an internally pressurized cylinder. A comparison to the ASME Pressure Vessel Code method for deriving stress intensity factors was also made. The derived weight functions enable simple calculations of stress intensity factors for complex stress distributions.


Sign in / Sign up

Export Citation Format

Share Document