Structures Requirements for a Manned Space Station

1984 ◽  
Vol 106 (4) ◽  
pp. 304-309
Author(s):  
J. W. Mar

The structural designer, when asked to design the manned space station (MSS), will go over a checklist which includes: design criteria, factors of safety, environment, optimum design, methods of analyses, materials, and configurations. The structural designer of the manned space system must imbibe quantitative numbers which are several orders of magnitude different than those which are commonplace for earthbound structures. Additionally, the designer must bear in mind the methods of assembly and, in fact, should help in the design of the methods of assembly. Of special importance to the success of the station are the capabilities of the space construction engineers (SCE) who are the personnel who will perform the final assembly in the environment of zero g. The structural designer has a vested interest in defining and characterizing the role of the SCE because the details of the structure will to an important degree be determined by the methods of assembly.

Author(s):  
Kris See

What will be the future of medicine a decade from now? What difficulties related with preventing, detecting, and treating diseases will have been unraveled? How will space medicine make an impact?. Today as compared to previously, it is the role of space medicine to gear up astronauts sufficiently for their missions and also to maintain their health in good condition. Moreover, the exclusive and new environmental surroundings existing in space continuously propose prospects to validate theories and assumptions established by earth-based medicine and recognize likely mistakes and disparities, as we have been observing approximately more than a decade with outcomes for example, from the International Space Station.


Insight ◽  
2020 ◽  
Vol 23 (4) ◽  
pp. 19-21
Author(s):  
Kenneth L. Cureton
Keyword(s):  

2013 ◽  
Vol 365-366 ◽  
pp. 331-334
Author(s):  
Xue Ping Ren ◽  
Jian Da Gao

The role of converter spherical hinge is one of the main components, combined with practical work and With help of FEM, Thermal Stress coupling field of spherical washer can been obtained through numerical simulation. The result supplies substantial theoretical basis for further structure design and optimum design of mechanism.


2014 ◽  
Vol 266 ◽  
pp. 7-21 ◽  
Author(s):  
Ismail Levent Sarioglu ◽  
Bartosch Czapnik ◽  
Emine Bostanci ◽  
Olaf P. Klein ◽  
Hendrik Schröder ◽  
...  

2016 ◽  
Vol 24 (4) ◽  
pp. 667-694 ◽  
Author(s):  
Stjepan Picek ◽  
Claude Carlet ◽  
Sylvain Guilley ◽  
Julian F. Miller ◽  
Domagoj Jakobovic

The role of Boolean functions is prominent in several areas including cryptography, sequences, and coding theory. Therefore, various methods for the construction of Boolean functions with desired properties are of direct interest. New motivations on the role of Boolean functions in cryptography with attendant new properties have emerged over the years. There are still many combinations of design criteria left unexplored and in this matter evolutionary computation can play a distinct role. This article concentrates on two scenarios for the use of Boolean functions in cryptography. The first uses Boolean functions as the source of the nonlinearity in filter and combiner generators. Although relatively well explored using evolutionary algorithms, it still presents an interesting goal in terms of the practical sizes of Boolean functions. The second scenario appeared rather recently where the objective is to find Boolean functions that have various orders of the correlation immunity and minimal Hamming weight. In both these scenarios we see that evolutionary algorithms are able to find high-quality solutions where genetic programming performs the best.


Author(s):  
Reed M. Gardner ◽  
David V. Ostler ◽  
Brent D. Nelson ◽  
James S. Logan

2020 ◽  
Author(s):  
Ruben Perez-Mañanes ◽  
Sonia García de San José ◽  
Manuel Desco-Menéndez ◽  
Ignacio Sánchez-Arcilla ◽  
Esmeralda González-Fernández ◽  
...  

Abstract Background 3D printing and distributed manufacturing represent a paradigm shift in the health system that is becoming critical during the COVID-19 pandemic. University hospitals are also taking on the role of manufacturers of custom-made solutions thanks to 3D printing technology. Case Presentation We present a monocentric observational case study regarding the distributed manufacturing of three groups of products during the period of the COVID-19 pandemic from 14 March to 10 May 2020: personal protective equipment, ventilatory support, and diagnostic and consumable products. Networking during this period has enabled the delivery of a total of 17,276 units of products manufactured using 3D printing technology. The most manufactured product was the face shields and ear savers, while the one that achieved the greatest clinical impact was the mechanical ventilation adapters and swabs. The products were manufactured by individuals in 57.3% of the cases, and our hospital acted as the main delivery node in a hub with 10 other hospitals. The main advantage of this production model is the fast response to stock needs, being able to adapt almost in real time.Conclusions The role of 3D printing in the hospital environment allows the reconciliation of in-house and distributed manufacturing with traditional production, providing custom-made adaptation of the specifications, as well as maximum efficiency in the working and availability of resources, which is of special importance at critical times for health systems such as the current COVID-19 pandemic.


2018 ◽  
Vol 7 (4) ◽  
pp. 2139
Author(s):  
Savita J. ◽  
Somveer Jakhar

Salinity is one of the limiting environmental factors for crop production. Chickpea has special importance among the legumes especially in arid and semi-arid regions and is sensitive to salinity. Therefore, it becomes necessary to make a plan to mitigate the salinity effect on this plant. For this purpose, an experiment was conducted in the net house of Department of Botany, Kurukshetra University, Kurukshetra to investigate the role of sulfosalicylic acid (SSA) at different concentrations (10-4, 10-5 and 10-6 M) in overcoming salinity stress imposed on chickpea plants in natural conditions. Different salinity levels (0, 50 mM, 100 mM and 150 mM) were applied and caused a significant reduction in morphological and yield parameters. Our main findings are as follows: (1) Salt stress has detrimental effects on growth and physiology of plants. (2) Application of SSA at 10-5 M was the most significant concentration in modulating the inhibitory effects of salt stress.


Sign in / Sign up

Export Citation Format

Share Document