Real-Time Identification and Control of Springback in Sheet Metal Forming

1987 ◽  
Vol 109 (3) ◽  
pp. 265-273 ◽  
Author(s):  
A. Chandra

Sheet metal forming processes are prone to variations in material and process parameters. In an unmanned manufacturing cell, all the control functions must be automated and real-time measurement, identification, and control are necessary for satisfactory operation in the presence of these disturbances. A methodology is developed here for on-line identification of key material and process parameters in a combined stretch-bend situation. The springback predictions obtained from this scheme are verified, and an algorithm for on-line control of springback in plane strain stretch-bend operations is then discussed.

2019 ◽  
Vol 13 (2) ◽  
pp. 4911-4927
Author(s):  
Swagatika Mohanty ◽  
Srinivasa Prakash Regalla ◽  
Yendluri Venkata Daseswara Rao

Product quality and production time are critical constraints in sheet metal forming. These are normally measured in terms of surface roughness and forming time, respectively. Incremental sheet metal forming is considered as most suitable for small batch production specifically because it is a die-less manufacturing process and needs only a simple generic fixture. The surface roughness and forming time depend on several process parameters, among which the wall angle, step depth, feed rate, sheet thickness, and spindle speed have a greater impact on forming time and surface roughness. In the present work, the effect of step depth, feed rate and wall angle on the surface roughness and forming time have been investigated for constant 1.2 mm thick Al-1100 sheet and at a constant spindle speed of 1300 rpm. Since the variable effects of these parameters necessitate multi-objective optimization, the Taguchi L9 orthogonal array has been used to plan the experiments and the significance of parameters and their interactions have been determined using analysis of variance (ANOVA) technique. The optimum response has been brought out using response surfaces. Finally, the findings of response surface method have been validated by conducting additional experiments at the intermediate values of the parameters and these results were found to be in agreement with the predictions of Taguchi method and response surface method.


2010 ◽  
Vol 102-104 ◽  
pp. 232-236 ◽  
Author(s):  
Zhi Feng Liu ◽  
Qi Zhang ◽  
Wen Tong Yang ◽  
Jian Hua Wang ◽  
Yong Sheng Zhao

According to the characteristic which is more and difficult to determine about the automotive panel forming factors, based on the dynamic explicit method, taking the typical automobile front fender for example, do the simulation analysis by using of DYNAFORM. On the premise of taking springback factors into account, analog the best stamping process parameters has been optimized from the analysis results after simulation such as sheet metal forming limited drawing(FLD)and sheet metal thinning drawing.


Author(s):  
Hui-Ping Wang ◽  
Kunmin Zhao ◽  
Ping Hu ◽  
Zhengchun Fu ◽  
Jing-Ru Bao

Surface distortions are frequently introduced into Class “A” surfaces during various sheet metal forming operations such as drawing, trimming, and flanging. The origins of these surface distortions have not been well understood. The scope of this research is to investigate the distortion that occurs in the draw operation and to find effective and practical corrective methods. Five geometric parameters are first identified to represent typical depression features in automobile outer panels. Experimental dies are then designed to reflect various combinations of these five geometric parameters with the assistance of numerical simulations to ensure that the dies can make parts free of major defects such as splits and wrinkles. Surface distortions are observed in our stamping experiments and various techniques are used to measure and record the distortions for further mathematical analysis. Historical data of strains and deflections in distortion areas are collected through real-time measurement. The effects of three geometric parameters on distortion are analyzed using a full factorial DOE model. A geometry morphing program based on UG-NX platform is developed. The program is used to morph the die face in the distortion areas. Finally, three approaches that aim to correct distortions are tried out and the die morphing proves to be a practical and effective method.


Author(s):  
R. Mohanraj ◽  
S. Elangovan

Driven by an increasing demand from the aerospace industry, thin sheet forming of titanium and its alloys is gaining prominence in scientific research. The design and manufacture of aerospace components requires the utmost precision and accuracy. It is essential to have good control over the process parameters of the forming process. Processes such as incremental sheet metal forming (ISMF) are highly controlled in the current manufacturing environment, but improvements in geometric accuracy and thinning are still needed. Although ISMF has greater process competence for manufacturing airframe structures with minimal costs, the process has its own negative effect on geometric accuracy due to elastic springback and sheet thinning. In this study, finite element analysis and experimental work are performed, considering process parameters such as spindle speed, feed rate, step depth, and tool diameter, to study the geometric accuracy and thinning of Ti–6Al–4V alloy sheet, while incrementally forming an aerospace component with asymmetrical geometry. The results are useful for understanding the geometric accuracy and thinning effects on parts manufactured by single point incremental forming (SPIF). Results from finite element analysis and experimental work are compared and found to be in good agreement.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 89
Author(s):  
Sravan Tatipala ◽  
Johan Wall ◽  
Christian Johansson ◽  
Tobias Larsson

The ability to predict and control the outcome of the sheet metal forming process demands holistic knowledge of the product/process parameter influences and their contribution in shaping the output product quality. Recent improvements in the ability to harvest in-line production data and the increased capability to understand complex process behaviour through computer simulations open up the possibility for new approaches to monitor and control production process performance and output product quality. This research presents an overview of the common process monitoring and control approaches while highlighting their limitations in handling the dynamics of the sheet metal forming process. The current paper envisions the need for a collaborative monitoring and control system for enhancing production process performance. Such a system must incorporate comprehensive knowledge regarding process behaviour and parameter influences in addition to the current-system-state derived using in-line production data to function effectively. Accordingly, a framework for monitoring and control within automotive sheet metal forming is proposed. The framework addresses the current limitations through the use of real-time production data and reduced process models. Lastly, the significance of the presented framework in transitioning to the digital manufacturing paradigm is reflected upon.


2011 ◽  
Vol 63-64 ◽  
pp. 3-7
Author(s):  
Yan Min Xie

This paper presents a methodology to effectively determine the optimal process parameters using finite element analysis (FEA) and design of experiments (DOE) based on Metamodels. The idea is to establish an approximation function relationship between quality objectives and process parameters to alleviate the expensive computational expense in the optimization iterations for the sheet metal forming process. This paper investigated the Kriging metamodel approach. In order to prove accuracy and efficiency of Kriging method, the nonlinear function as test functions is implemented. At the same time, the practical nonlinear engineering problems such as square drawing are also optimized successfully by proposed method. The results prove Kriging model is an effective method for nonlinear engineering problem in practice.


Sign in / Sign up

Export Citation Format

Share Document