A Novel Turbomachinery Air-Brake Concept for Quiet Aircraft

2010 ◽  
Vol 132 (4) ◽  
Author(s):  
P. N. Shah ◽  
D. D. Mobed ◽  
Z. S. Spakovszky

A novel air-brake concept for next-generation, low-noise civil aircraft is introduced. Deployment of such devices in clean airframe configuration can potentially reduce aircraft source noise and noise propagation to the ground. The generation of swirling outflow from a duct, such as an aircraft engine, is demonstrated to have high drag and low noise. The simplest configuration is a ram pressure-driven duct with stationary swirl vanes, a so-called swirl tube. A detailed aerodynamic design is performed using first principles based modeling and high-fidelity numerical simulations. The swirl-drag-noise relationship is quantified through scale-model aerodynamic and aeroacoustic wind tunnel tests. The maximum measured stable flow drag coefficient is 0.83 at exit swirl angles close to 50 deg. The acoustic signature, extrapolated to full-scale, is found to be well below the background noise of a well-populated area. Vortex breakdown is found to be the aerodynamically and acoustically limiting phenomenon, generating a white-noise signature that is about 15 dB louder than a stable swirling flow.


Author(s):  
P. N. Shah ◽  
D. D. Mobed ◽  
Z. S. Spakovszky

A novel air-brake concept for next generation, low-noise civil aircraft is introduced. Deployment of such devices in clean airframe configuration reduces aircraft source noise and noise propagation to the ground. The generation of swirling outflow from a duct, such as an aircraft engine, is demonstrated to have high drag and low noise. The simplest configuration is a ram pressure driven duct with stationary swirl vanes, a so-called swirl tube. A detailed aerodynamic design is performed using first principles based modeling and high-fidelity numerical simulations. The swirl-drag-noise relationship is quantified through scale-model aerodynamic and aeroacoustic wind tunnel tests. The maximum measured stable flow drag coefficient is 0.83 at exit swirl angles close to 50 degrees. The acoustic signature, extrapolated to full-scale, is found to be well below the background noise of a well populated area. Vortex breakdown is found to be the aerodynamically and acoustically limiting physical phenomenon, generating a white-noise signature that is about 15 dB louder than a stable swirling flow.



2020 ◽  
Vol 32 (12) ◽  
pp. 125118
Author(s):  
Yazhou Shen ◽  
Mohamad Ghulam ◽  
Kai Zhang ◽  
Ephraim Gutmark ◽  
Christophe Duwig


1967 ◽  
Vol 89 (3) ◽  
pp. 609-615
Author(s):  
Turgut Sarpkaya

The results of an experimental study of the forced and periodic breakdown of a confined vortex rotating in the opposite direction are presented. The vortex tube consists of two chambers connected by a short conduit through streamlined transitions. The upstream end is closed by a plain wall, and a circular orifice is provided at the downstream end. The swirling flow and the breaker-vortex are generated by introducing varying proportions of air or water through tangential ports located near the upstream and downstream walls of the unit. The cases of single breakdown and periodic breakdown are explored and typical data are presented for each case. Finally, the pros and cons of the two existing transition theories are discussed.



2001 ◽  
Vol 17 (3) ◽  
pp. 131-138
Author(s):  
Feng Chin Tsai ◽  
Rong Fung Huang

AbstractThe effects of blockage and swirl on the macro flow structures of the annular jet past a circular disc are experimentally studied through the time-averaged streamline patterns. In the blockage-effect regime, the flows present multiple modes, single bubble, dual rings, vortex breakdown, and triple rings, in different regimes of blockage ratio and swirl number. The topological models of the flow structures are proposed and discussed according to the measured flow fields to manifest the complex flow structures. The single bubble is a closed recirculation bubble with a stagnation point on the central axis. The dual-ring flow is an open-top recirculsation zone, in which a pair of counter-rotating vortex rings exists in the near wake. The fluids in the dual rings are expelled downstream through a central jet-like swirling flow. A vortex breakdown may occur in the central jet-like swirling flow if the exit swirl number exceeds critical values. When the vortex breakdown interacts with the dual rings, a complex triple-ring flow structure forms. Axial distributions of the local swirl number are presented and discussed. The local swirl number increases with the increase of the exit swirl number and attains the maximum in the dual-ring mode. At large exit swirl numbers where the vortex breakdown occurs, the local swirl number decreases drastically to a low value.



2000 ◽  
Vol 419 ◽  
pp. 151-175 ◽  
Author(s):  
A. J. COOPER ◽  
N. PEAKE

A theoretical model of an aeroengine intake–fan system is developed in order to show the existence of acoustic resonance in the intake. In general this phenomenon can be linked to instabilities in aircraft engine inlets.The model incorporates a slowly varying duct intake and accounts for the swirling flow downstream of the fan. The slow axial variation in cross-section gives rise to turning points where upstream-propagating acoustic modes are totally reflected into downstream-propagating modes. The effect of the swirling flow downstream can be to cut off a mode which is cut on upstream of the fan. It is shown that these two aspects of the flow, coupled with the effects of the fan (represented by an actuator disc), can lead to acoustic modes becoming trapped in the intake, thus giving rise to pure acoustic resonance.A whole range of system parameters, such as axial, fan and swirl Mach numbers, which satisfy the conditions for resonance are identified. The effects of a stationary blade row behind the fan are also considered leading to a second family of resonant states. In addition we find resonance due to reflection of acoustic modes at the open (inlet) end of the duct.



Author(s):  
M. Berrino ◽  
D. Lengani ◽  
F. Satta ◽  
M. Ubaldi ◽  
P. Zunino ◽  
...  

The present paper is focused on the investigation of the dynamics of the flow downstream of an Ultra Low NOx (ULN) injection system, designed to reduce NOx emissions and combustor axial length. Two rectangular flame tubes have been experimentally investigated: one aimed at simulating an unconfined exit flow, and another with the same transverse dimensions of the combustor annular sector, to simulate the confined flow field. The effects induced by the realistic flame tube presence are investigated comparing the flow field with that generated in the unconfined case. Particular attention is paid to the vortex breakdown phenomena associated with the flow generated by the two co-rotating swirlers constituting the injection system. Two different and complementary measurement techniques have been adopted to characterize the aerodynamics of the vortex breakdown. The hot-wire investigation results reveal the frequencies associated with the precession motion due to the vortex breakdown. The Particle Image Velocimetry technique has been coupled with Proper Orthogonal Decomposition (POD) for data post-processing in order to reconstruct the swirling motion generated by the injection system. The property of POD, which consists of splitting temporal from spatial information of the flow field in analysis, allows the distinction between deterministic and random fluctuations without the need of an external trigger signal. This feature is fundamental for the better understanding of an highly-swirling flow.



2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xingtuan Yang ◽  
Nan Gui ◽  
Gongnan Xie ◽  
Jie Yan ◽  
Jiyuan Tu ◽  
...  

This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical simulation. The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities, is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown. More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.



Author(s):  
Jervis D. Kester

The high bypass ratio engines being introduced into service have generally been acknowledged to provide significant improvement in noise abatement. Substanital improvements in future designs will require research into several areas of engine-component noise generation. Low-noise standards also will be influenced by the aircraft mission requirements that affect selection of the power-plant cycle. Each mission requirement presents special noise problems, which must be solved. This paper explores the relationships among aircraft mission requirements, noise research in process at Pratt & Whitney Aircraft, and trends predicted for future research.



Author(s):  
Yang Zhang ◽  
Yifei Li ◽  
Xiutao Bian ◽  
Xin Yuan

The lean combustion chamber of low NOx emission engines has a short distance between combustion outlet and nozzle guide vanes (NGVs), with strong swirlers located upstream of the turbine inlet to from steady circulation in the combustion region. Although the lean combustion design benefits emission control, it complicates the turbine’s aerodynamics and heat transfer. The strong swirling flow will influence the near-wall flow field where film cooling acts. This research investigates the influence of inlet swirl on the film cooling of cascades. The test cascades are a 1.95 scale model based on the GE-E3 profile, with an inlet Mach number of 0.1 and Reynolds number of 1.48 × 105. Film cooling effectiveness is measured with pressure-sensitive paint (PSP) technology, with nitrogen simulating coolant at a density ratio of near to 1.0. Two neighboring passages are investigated simultaneously, so that pressure and suction side the film cooling effectiveness can be compared. The inlet swirl is produced by a swirler placed upstream, near the inlet, with five positions along the pitchwise direction. These are as follows: blade 1 aligned, passage 1–2 aligned, blade 2 aligned, passage 2–3 aligned and blade 3 aligned. According to the experimental results, the near-hub region is strongly influenced by inlet swirl, where the averaged film cooling effectiveness can differ by up to 12% between the neighboring blades. At the spanwise location Z/Span = 0.7, when the inlet swirl is moved from blade 1 aligned (position 5) to blade 2 aligned (position 3), the film cooling effectiveness in a small area near the endwall can change by up to 100%.



Sign in / Sign up

Export Citation Format

Share Document