Development of a Large-Scale Wind Tunnel for the Simulation of Turbomachinery Airfoil Boundary Layers

1981 ◽  
Vol 103 (4) ◽  
pp. 678-687 ◽  
Author(s):  
M. F. Blair ◽  
D. A. Bailey ◽  
R. H. Schlinker

The procedures employed for the design of a closed-circuit, boundary layer wind tunnel are described. The tunnel was designed for the generation of large-scale, two-dimensional boundary layers on a heated flat surface with Reynolds numbers, pressure gradients, and free-stream turbulence levels typical of turbomachinery airfoils. The results of a series of detailed tests to evaluate the tunnel performance are also described. Testing was conducted for zero pressure gradient flow with natural boundary layer transition. Heat transfer data and boundary layer profiles are presented for a flow with 0.25 percent free-stream turbulence. The flow in the tunnel test-section was shown to be highly uniform and two-dimensional. Test boundary layer profile and convective heat transfer data were self-consistent and in excellent agreement with classic correlations. Test-section free-stream total pressure, multi-component turbulence intensity, longitudinal integral scale, and spectral distributions are presented for grid-generated turbulence levels ranging from 1 to 7 percent. The test-section free-stream turbulence was shown to be both homogeneous and nearly isotropic. Anticipated applications of the facility include studies of the heat transfer and aerodynamics for conditions typical of those existing on gas turbine airfoils.

1988 ◽  
Vol 92 (916) ◽  
pp. 224-229
Author(s):  
P. E. Roach

Summary The procedures employed for the design of a closed-circuit, boundary layer wind tunnel are described. The tunnel was designed for the generation of relatively large-scale, two-dimensional boundary layers with Reynolds numbers, pressure gradients and free-stream turbulence levels typical of the turbomachinery environment. The results of a series of tests to evaluate the tunnel performance are also described. The flow in the test section is shown to be highly uniform and steady, with very low (natural) free-stream turbulence intensities. Measured boundary layer mean and fluctuating velocity profiles were found to be in good agreement with classical correlations. Test-section free-stream turbulence intensities are presented for grid-generated turbulence: agreement with expectation is again found to be good. Immediate applications to the tunnel include friction drag reduction and boundary layer transition studies, with future possibilities including flow separation and other complex flows typical of those found in gas turbines.


1959 ◽  
Vol 6 (1) ◽  
pp. 97-112 ◽  
Author(s):  
J. G. Burns ◽  
W. H. J. Childs ◽  
A. A. Nicol ◽  
M. A. S. Ross

A hinged vane and a sensitive electrical system for recording the motion of the vane have been developed for the observation of fluctuating y-components of velocity in boundary layers. An approximate theory of the natural oscillations of such vanes is presented and experimentally verified. Using vanes as resonant detectors, meassurements have been made of oscillations injected into the laminar boundary layer on a flat plate in a wind tunnel with 0·3% free-stream turbulence. Points on the neutral Tollmien-Schlichting curve have thereby been obtained which lie close to the theoretical neutral curve.


2016 ◽  
Vol 802 ◽  
pp. 79-107 ◽  
Author(s):  
Eda Dogan ◽  
Ronald E. Hanson ◽  
Bharathram Ganapathisubramani

The scale interactions occurring within a turbulent boundary layer are investigated in the presence of free-stream turbulence. The free-stream turbulence is generated by an active grid. The free stream is monitored by a single-component hot-wire probe, while a second probe is roved across the height of the boundary layer at the same streamwise location. Large-scale structures occurring in the free stream are shown to penetrate the boundary layer and increase the streamwise velocity fluctuations throughout. It is speculated that, depending on the extent of the penetration, i.e. based on the level of free-stream turbulence, the near-wall turbulence production peaks at different wall-normal locations than the expected location of $y^{+}\approx 15$ for a canonical turbulent boundary layer. It is shown that the large scales dominating the log region have a modulating effect on the small scales in the near-wall region; this effect becomes more significant with increasing turbulence in the free stream, i.e. similarly increasing $Re_{\unicode[STIX]{x1D706}_{0}}$. This modulating interaction and its Reynolds-number trend have similarities with canonical turbulent boundary layers at high Reynolds numbers where the interaction between the large scales and the envelope of the small scales exhibits a pure amplitude modulation (Hutchins & Marusic, Phil. Trans. R. Soc. Lond. A, vol. 365 (1852), 2007, pp. 647–664; Mathis et al., J. Fluid Mech., vol. 628, 2009, pp. 311–337). This similarity has encouraging implications towards generalising scale interactions in turbulent boundary layers.


2003 ◽  
Vol 125 (2) ◽  
pp. 242-251 ◽  
Author(s):  
Michael J. Barrett ◽  
D. Keith Hollingsworth

A new heat transfer correlation for turbulent boundary layers subjected to free-stream turbulence was developed. The new correlation estimates dimensionless heat transfer coefficients without the use of conventional boundary-layer thickness measures and the associated Reynolds numbers. Using only free-stream parameters (mean velocity, turbulence intensity and length scale), the new correlation collected many authors’ elevated-turbulence, flat-plate Stanton number data to within ±11%. The level of scatter around the new correlation compared well to previous correlations that require additional flow information as input parameters. For a common subset of data, scatter using earlier correlation methods ranged from 5–10%; scatter around the new correlation varied from 6–9% over the same data subset. A length-scale dependence was identified in a Stanton number previously defined using a near-wall streamwise velocity fluctuation, St′. A new near-wall Stanton number was introduced; this parameter was regarded as a constant in a two-region boundary layer model on which the new correlation is based.


1994 ◽  
Vol 116 (1) ◽  
pp. 46-56 ◽  
Author(s):  
A. J. Hanford ◽  
D. E. Wilson

A phenomenological model is proposed that relates the effect of free-stream turbulence to the increase in stagnation point heat transfer. The model requires both turbulence intensity and energy spectra as inputs to the unsteady velocity at the edge of the boundary layer. The form of the edge velocity contains both a pulsation of the incoming flow and an oscillation of the streamlines. The incompressible unsteady and time-averaged boundary layer response is determined by solving the momentum and energy equations. The model allows for arbitrary two-dimensional geometry; however, results are given only for a circular cylinder. The time-averaged Nusselt number is determined theoretically and compared to existing experimental data.


2019 ◽  
Vol 866 ◽  
pp. 526-566 ◽  
Author(s):  
Jiho You ◽  
Tamer A. Zaki

Direct numerical simulations are performed to study zero-pressure-gradient turbulent boundary layers beneath quiescent and vortical free streams. The inflow boundary layer is computed in a precursor simulation of laminar-to-turbulence transition, and the free-stream vortical forcing is obtained from direct numerical simulations of homogeneous isotropic turbulence. A level-set approach is employed in order to objectively distinguish the boundary-layer and free-stream fluids, and to accurately evaluate their respective contributions to flow statistics. When free-stream turbulence is present, the skin friction coefficient is elevated relative to its value in the canonical boundary-layer configuration. An explanation is provided in terms of an increase in the power input into production of boundary-layer turbulence kinetic energy. This increase takes place deeper than the extent of penetration of the external perturbations towards the wall, and also despite the free-stream perturbations being void of any Reynolds shear stress. Conditional statistics demonstrate that the free-stream turbulence has two effects on the boundary layer: one direct and the other indirect. The low-frequency components of the free-stream turbulence penetrate the logarithmic layer. The associated wall-normal Reynolds stress acts against the mean shear to enhance the shear stress, which in turn enhances turbulence production. This effect directly enlarges the scale and enhances the energy of outer large-scale motions in the boundary layer. The second, indirect effect is the influence of these newly formed large-scale structures. They modulate the near-wall shear stress and, as a result, increase the turbulence kinetic energy production in the buffer layer, which is deeper than the extent of penetration of free-stream turbulence towards the wall.


2003 ◽  
Vol 125 (2) ◽  
pp. 232-241 ◽  
Author(s):  
Michael J. Barrett ◽  
D. Keith Hollingsworth

Turbulent boundary layers were subjected to grid-generated free-stream turbulence to study the effects of length scale and intensity on heat transfer. Relative to conventional boundary layer thickness measures, test conditions included very small-scale free-stream turbulence. The boundary layers studied ranged from 400–2700 in momentum-thickness Reynolds number and from 450–1900 in enthalpy-thickness Reynolds number. Free-stream turbulence intensities varied from 0.1–8.0%. Ratios of free-stream length scale to boundary-layer momentum thickness ranged from 4.4–32.5. The turbulent-to-viscous length-scale ratios presented are the smallest found in the heat-transfer literature; the ratios spanned from 115–1020. The turbulent-to-thermal ratios (using enthalpy thickness as the thermal scale) are also the smallest reported; the ratios ranged from 3.2–12.3. Relative to clean-free-stream expectations based on the momentum- and enthalpy-thickness Reynolds numbers, the skin friction coefficient increased by up to 16%, and the Stanton number increased by up to 46%.


1972 ◽  
Vol 94 (1) ◽  
pp. 23-28 ◽  
Author(s):  
E. Brundrett ◽  
W. B. Nicoll ◽  
A. B. Strong

The van Driest damped mixing length has been extended to account for the effects of mass transfer through a porous plate into a turbulent, two-dimensional incompressible boundary layer. The present mixing length is continuous from the wall through to the inner-law region of the flow, and although empirical, has been shown to predict wall shear stress and heat transfer data for a wide range of blowing rates.


Sign in / Sign up

Export Citation Format

Share Document