The Mean Flow Structure Around and Within a Turbulent Junction or Horseshoe Vortex—Part I: The Upstream and Surrounding Three-Dimensional Boundary Layer

1988 ◽  
Vol 110 (4) ◽  
pp. 406-414 ◽  
Author(s):  
J. D. Menna ◽  
F. J. Pierce

The mean flow structure upstream, around, and in a turbulent junction or horseshoe vortex is reported for an incompressible, subsonic flow. This fully documented, unified, comprehensive, and self-consistent data base is offered as a benchmark or standard case for assessing the predictive capabilities of computational codes developed to predict this kind of complex flow. Part I of these papers defines the total flow being documented. The upstream and surrounding three-dimensional turbulent boundary layer-like flow away from separation has been documented with mean velocity field and turbulent kinetic energy field measurements made with hot film anemometry, and local wall shear stress measurements. Data are provided for an initial condition plane well upstream of the junction vortex flow to initiate a boundary layer calculation, and freestream or edge velocity, as well as floor static pressure, are reported to proceed with the solution. Part II of these papers covers the flow through separation and within the junction vortex flow.


1982 ◽  
Vol 119 ◽  
pp. 121-153 ◽  
Author(s):  
Udo R. Müller

An experimental study of a steady, incompressible, three-dimensional turbulent boundary layer approaching separation is reported. The flow field external to the boundary layer was deflected laterally by turning vanes so that streamwise flow deceleration occurred simultaneous with cross-flow acceleration. At 21 stations profiles of the mean-velocity components and of the six Reynolds stresses were measured with single- and X-hot-wire probes, which were rotatable around their longitudinal axes. The calibration of the hot wires with respect to magnitude and direction of the velocity vector as well as the method of evaluating the Reynolds stresses from the measured data are described in a separate paper (Müller 1982, hereinafter referred to as II). At each measuring station the wall shear stress was inferred from a Preston-tube measurement as well as from a Clauser chart. With the measured profiles of the mean velocities and of the Reynolds stresses several assumptions used for turbulence modelling were checked for their validity in this flow. For example, eddy viscosities for both tangential directions and the corresponding mixing lengths as well as the ratio of resultant turbulent shear stress to turbulent kinetic energy were derived from the data.



1988 ◽  
Vol 110 (4) ◽  
pp. 415-423 ◽  
Author(s):  
F. J. Pierce ◽  
M. D. Harsh

The mean flow structure upstream, around, and in a turbulent junction or horseshoe vortex are reported for an incompressible, subsonic flow. This fully documented, unified, comprehensive, and self-consistent data base is offered as a benchmark or standard test case for assessing the predictive capabilities of computational codes developed to predict this kind of complex flow. The three-dimensional turbulent boundary layer-like flow upstream and around the separated junction vortex flow is described in a companion paper, Part I. Part II of these papers covers the flow through the separation region and in the vortex system. This portion of the flow has been documented with mean velocity, static pressure, and total pressure measurements using a very carefully calibrated five-hole probe. The streamwise vorticity field is calculated from the measured velocity field. Extensive floor static pressure measurements emphasizing the region of the vortex system, and static pressure measurements on the cylinder surface are also reported. Flow visualizations on the floor and cylinder surface show unusual detail and agree well both qualitatively and quantitatively with the various flow field measurements.



1978 ◽  
Vol 85 (1) ◽  
pp. 33-56 ◽  
Author(s):  
K. S. Hebbar ◽  
W. L. Melnik

An experimental investigation was conducted at selected locations in the wall region of a three-dimensional turbulent boundary layer relaxing in a nominally zero external pressure gradient behind a transverse hump (in the form of a 30° swept, 5 ft chord, wing-type model) faired into the side wall of a low-speed wind tunnel. The boundary layer (approximately 3·5 in. thick near the first survey station, where the length Reynolds number was 5·5 × 106) had a maximum cross-flow velocity ratio of 0·145 and a maximum cross-flow angle of 21·9° close to the wall. The hot-wire data indicated that the apparent dimensionless velocity profiles in the viscous sublayer are universal and that the wall influence on the hot wire is negligible beyond y+= 5. The existence of wall similarity in the relaxing flow field was confirmed in the form of a log law based on the resultant mean velocity and resultant friction velocity (obtained from the measured skin friction).The smallest collateral region extended from the point nearest to the wall (y+≈ 1) up to y+= 9·7, corresponding to a resultant mean velocity ratio (local to free-stream) of 0·187. The unusual feature of these profiles was the presence of a narrow region of slightly decreasing cross-flow angle (1° or less) that extended from the point of maximum cross-flow angle down to the outer limit of the collateral region. A sublayer analysis of the flow field using the measured local transverse pressure gradient slightly overestimated the decrease in cross-flow angle. It is concluded that, in the absence of these gradients, the skewing of the flow could have been much more pronounced practically down to the wall (limited only by the resolution of the sensor), implying a near-wallnon-collateralflow field consistent with the equations of motion in the neighbourhood of the wall.The streamwise relaxation of the mean flow field based on the decay of the cross-flow angle was much faster in the inner layer than in the outer layer. Over the stream-wise distance covered, the mean flow in the inner layer and the wall shear-stress vector relaxed to a two-dimensional state in approximately 10 boundary-layer thicknesses whereas the relaxation of the turbulence was slower and was not complete over the same distance.



2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.



1965 ◽  
Vol 22 (2) ◽  
pp. 285-304 ◽  
Author(s):  
A. E. Perry ◽  
P. N. Joubert

The purpose of this paper is to provide some possible explantions for certain observed phenomena associated with the mean-velocity profile of a turbulent boundary layer which undergoes a rapid yawing. For the cases considered the yawing is caused by an obstruction attached to the wall upon which the boundary layer is developing. Only incompressible flow is considered.§1 of the paper is concerned with the outer region of the boundary layer and deals with a phenomenon observed by Johnston (1960) who described it with his triangular model for the polar plot of the velocity distribution. This was also observed by Hornung & Joubert (1963). It is shown here by a first-approximation analysis that such a behaviour is mainly a consequence of the geometry of the apparatus used. The analysis also indicates that, for these geometries, the outer part of the boundary-layer profile can be described by a single vector-similarity defect law rather than the vector ‘wall-wake’ model proposed by Coles (1956). The former model agrees well with the experimental results of Hornung & Joubert.In §2, the flow close to the wall is considered. Treating this region as an equilibrium layer and using similarity arguments, a three-dimensional version of the ‘law of the wall’ is derived. This relates the mean-velocity-vector distribution with the pressure-gradient vector and wall-shear-stress vector and explains how the profile skews near the wall. The theory is compared with Hornung & Joubert's experimental results. However at this stage the results are inconclusive because of the lack of a sufficient number of measured quantities.



A set of model equations is given to describe the gross features of a statistically steady or 'slowly varying’ inhomogeneous field of turbulence and the mean velocity distribution. The equations are based on the idea that turbulence can be characterized by ‘densities’ which obey nonlinear diffusion equations. The diffusion equations contain terms to describe the convection by the mean flow, the amplification due to interaction with a mean velocity gradient, the dissipation due to the interaction of the turbulence with itself, and the dif­fusion also due to the self interaction. The equations are similar to a set proposed by Kolmo­gorov (1942). It is assumed that both an ‘energy density’ and a ‘vorticity density’ satisfy diffusion equations, and that the self diffusion is described by an eddy viscosity which is a function of the energy and vorticity densities; the eddy viscosity is also assumed to describe the diffu­sion of mean momentum by the turbulent fluctuations. It is shown that with simple and plausible assumptions about the nature of the interaction terms, the equations form a closed set. The appropriate boundary conditions at a solid wall and a turbulent interface, with and without entrainment, are discussed. It is shown that the dimensionless constants which appear in the equations can all be estimated by general arguments. The equations are then found to predict the von Kármán constant in the law of the wall with reasonable accuracy. An analytical solution is given for Couette flow, and the result of a numerical study of plane Poiseuille flow is described. The equations are also applied to free turbulent flows. It is shown that the model equations completely determine the structure of the similarity solutions, with the rate of spread, for instance, determined by the solution of a nonlinear eigenvalue problem. Numerical solutions have been obtained for the two-dimensional wake and jet. The agreement with experiment is good. The solutions have a sharp interface between turbulent and non-turbulent regions and the mean velocity in the turbulent part varies linearly with distance from the interface. The equations are applied qualitatively to the accelerating boundary layer in flow towards a line sink, and the decelerating boundary layer with zero skin friction. In the latter case, the equations predict that the mean velocity should vary near the wall like the 5/3 power of the distance. It is shown that viscosity can be incorporated formally into the model equations and that a structure can be given to the interface between turbulent and non-turbulent parts of the flow.



1970 ◽  
Vol 37 (2) ◽  
pp. 488-493 ◽  
Author(s):  
P. S. Virk ◽  
H. S. Mickley ◽  
K. A. Smith

The maximum drag reduction in turbulent pipe flow of dilute polymer solutions is ultimately limited by a unique asymptote described by the experimental correlation: f−1/2=19.0log10(NRef1/2)−32.4 The semilogarithmic mean velocity profile corresponding to and inferred from this ultimate asymptote has a mixing-length constant of 0.085 and shares a trisection (at y+ ∼ 12) with the Newtonian viscous sublayer and law of the wall. Experimental mean velocity profiles taken during drag reduction lie in the region bounded by the inferred ultimate profile and the Newtonian law of the wall. At low drag reductions the experimental profiles are well correlated by an “effective slip” model but this fails progressively with increasing drag reduction. Based on the foregoing a three-zone scheme is proposed to model the mean flow structure during drag reduction. In this the mean velocity profile segments are (a) a viscous sublayer, akin to Newtonian, (b) an interactive zone, characteristic of drag reduction, in which the ultimate profile is followed, and (c) a turbulent core in which the Newtonian mixing-length constant applies. The proposed model is consistent with experimental observations and reduces satisfactorily to the Taylor-Prandtl scheme and the ultimate profile, respectively, at the limits of zero and maximum drag reductions.



1969 ◽  
Vol 36 (4) ◽  
pp. 785-803 ◽  
Author(s):  
Francis P. Bretherton

A train of internal gravity waves in a stratified liquid exerts a stress on the liquid and induces changes in the mean motion of second order in the wave amplitude. In those circumstances in which the concept of a slowly varying quasi-sinusoidal wave train is consistent, the mean velocity is almost horizontal and is determined to a first approximation irrespective of the vertical forces exerted by the waves. The sum of the mean flow kinetic energy and the wave energy is then conserved. The circulation around a horizontal circuit moving with the mean velocity is increased in the presence of waves according to a simple formula. The flow pattern is obtained around two- and three-dimensional wave packets propagating into a liquid at rest and the results are generalized for any basic state of motion in which the internal Froude number is small. Momentum can be associated with a wave packet equal to the horizontal wave-number times the wave energy divided by the intrinsic frequency.



1995 ◽  
Vol 290 ◽  
pp. 225-262 ◽  
Author(s):  
Semİh M. Ölçmen ◽  
Roger L. Simpson

A three-dimensional, pressure-driven turbulent boundary layer created by an idealized wing–body junction flow was studied experimentally. The data presented include time-mean static pressure and directly measured skin-friction magnitude on the wall. The mean velocity and all Reynolds stresses from a three-velocity-component fibre-optic laser-Doppler anemometer are presented at several stations along a line determined by the mean velocity vector component parallel to the wall in the layer where the $\overline{u^2}$ kinematic normal stress is maximum (normal-stress coordinate system). This line was selected by intuitively reasoning that overlap of the near-wall flow and outer-region flow occurs at the location where $\overline{u^2}$ is maximum. Along this line the flow is subjected to a strong crossflow pressure gradient, which changes sign for the downstream stations. The shear-stress vector direction in the flow lags behind the flow gradient vector direction. The flow studied here differs from many other experimentally examined three-dimensional flows in that the mean flow variables depend on three spatial axes rather than two axes, such as flows in which the three-dimensionality of the flow has been generated either by a rotating cylinder or by a pressure gradient in one direction only throughout the flow.The data show that the eddy viscosity of the flow is not isotropic. These and other selected data sets show that the ratio of spanwise to streamwise eddy viscosities in the wall-shear-stress coordinate system is less scattered and more constant (about 0.6) than in the local free-stream coordinate system or the normal stress coordinate system. For y+ > 50 and y/δ < 0.8, the ratio of the magnitude of the kinematic shear stress |τ/ρ| to the kinematic normal stress $\overline{v^2}$ is approximately a constant for three-dimensional flow stations of both shear-driven and pressure-driven three-dimensional flows. In the same region, the ratio of the kinematic shear stresses $-\overline{vw}/-\overline{uw}$ appears to be a function of y+ in wall-stress coordinates for three-dimensional pressure-driven flows.



1956 ◽  
Vol 1 (2) ◽  
pp. 191-226 ◽  
Author(s):  
Donald Coles

After an extensive survey of mean-velocity profile measurements in various two-dimensional incompressible turbulent boundary-layer flows, it is proposed to represent the profile by a linear combination of two universal functions. One is the well-known law of the wall. The other, called the law of the wake, is characterized by the profile at a point of separation or reattachment. These functions are considered to be established empirically, by a study of the mean-velocity profile, without reference to any hypothetical mechanism of turbulence. Using the resulting complete analytic representation for the mean-velocity field, the shearing-stress field for several flows is computed from the boundary-layer equations and compared with experimental data.The development of a turbulent boundary layer is ultimately interpreted in terms of an equivalent wake profile, which supposedly represents the large-eddy structure and is a consequence of the constraint provided by inertia. This equivalent wake profile is modified by the presence of a wall, at which a further constraint is provided by viscosity. The wall constraint, although it penetrates the entire boundary layer, is manifested chiefly in the sublayer flow and in the logarithmic profile near the wall.Finally, it is suggested that yawed or three-dimensional flows may be usefully represented by the same two universal functions, considered as vector rather than scalar quantities. If the wall component is defined to be in the direction of the surface shearing stress, then the wake component, at least in the few cases studied, is found to be very nearly parallel to the gradient of the pressure.



Sign in / Sign up

Export Citation Format

Share Document