The structure of a highly decelerated axisymmetric turbulent boundary layer

2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.

An experimental investigation has been made of turbulent boundary layer response to harmonic oscillations associated with a travelling wave imposed on an otherwise constant freestream velocity and convected in the freestream direction. The tests covered oscillation frequencies of 4-12 Hz for freestream amplitudes of up to 11% of the mean velocity. Additional steady flow measurements were used to infer the quasi-steady response to freestream oscillations. The results show a welcome insensitivity of the mean flow and turbulent intensity distributions to the freestream oscillations tested. An approximate analysis based on these results has been developed. It is probably of limited validity but it does provide a useful guide to the physical processes involved. The effects on boundary layer response of varying the travelling wave convection velocity and frequency of oscillation are illustrated by the analysis and show a behaviour broadly similar to that of laminar boundary layers. The travelling wave convection velocity exhibits a dominant influence on the turbulent boundary layer response to freestream oscillations.


2009 ◽  
Vol 638 ◽  
pp. 267-303 ◽  
Author(s):  
PIERRE RICCO

The response of the Blasius boundary layer to free-stream vortical disturbances of the convected gust type is studied. The vorticity signature of the boundary layer is computed through the boundary-region equations, which are the rigorous asymptotic limit of the Navier–Stokes equations for low-frequency disturbances. The method of matched asymptotic expansion is employed to obtain the initial and outer boundary conditions. For the case of forcing by a two-dimensional gust, the effect of a wall-normal wavelength comparable with the boundary-layer thickness is taken into account. The gust viscous dissipation and upward displacement due to the mean boundary layer produce significant changes on the fluctuations within the viscous region. The same analysis also proves useful for computing to second-order accuracy the boundary-layer response induced by a three-dimensional gust with spanwise wavelength comparable with the boundary-layer thickness. It also follows that the boundary-layer fluctuations of the streamwise velocity match the corresponding free-stream velocity component. The velocity profiles are compared with experimental data, and good agreement is attained.The generation of Tollmien–Schlichting waves by the nonlinear mixing between the two-dimensional unsteady vorticity fluctuations and the mean flow distortion induced by localized wall roughness and suction is also investigated. Gusts with small wall-normal wavelengths generate significantly different amplitudes of the instability waves for a selected range of forcing frequencies. This is primarily due to the disparity between the streamwise velocity fluctuations in the free stream and within the boundary layer.


2008 ◽  
Vol 130 (6) ◽  
Author(s):  
Martin Agelinchaab ◽  
Mark F. Tachie

A particle image velocimetry is used to study the mean and turbulent fields of separated and redeveloping flow over square, rectangular, and semicircular blocks fixed to the bottom wall of an open channel. The open channel flow is characterized by high background turbulence level, and the ratio of the upstream boundary layer thickness to block height is considerably higher than in prior experiments. The variation of the Reynolds stresses along the dividing streamlines is discussed within the context of vortex stretching, longitudinal strain rate, and wall damping. It appears that wall damping is a more dominant mechanism in the vicinity of reattachment. In the recirculation and reattachment regions, profiles of the mean velocity, turbulent quantities, and transport terms are used to document the salient features of block geometry on the flow. The flow characteristics in these regions strongly depend on block geometry. Downstream of reattachment, a new shear layer is formed, and the redevelopment of the shear layer toward the upstream open channel boundary layer is studied using the boundary layer parameters and Reynolds stresses. The results show that the mean flow rapidly redeveloped so that the Clauser parameter recovered to its upstream value at 90 step heights downstream of reattachment. However, the rate of development close to reattachment strongly depends on block geometry.


This paper describes an experimental and theoretical investigation of laminar boundary layer response to harmonic oscillations in velocity associated with a travelling wave imposed on an otherwise constant freestream velocity and convected in the freestream direction. An oscillatory flow wind tunnel and recording system were set up to produce and measure laminar boundary layer velocity profiles over frequencies of 2–10 H z for freestream amplitudes of up to 14 % of the mean velocity. An analysis on the lines of Lighthill’s theory but applying for any travelling wave convection velocity has been developed for both the low and high frequency cases. The experiments show that for a wide range of amplitude and frequency of oscillation the mean flow characteristics are the same as those of steady flow. This supports a major assumption of the theory which is linear in terms of the oscillating perturbations. Comparisons between theory and experiment show satisfactory agreement although the experimental results are largely for frequencies between the extreme ranges of the theories and they display features which are special to that intermediate frequency range. It is found that the boundary layer response is predominantly affected by the travelling wave convection velocity and frequency. In the experiments the freestream oscillation amplitudes increased with downstream distance but the effects of this increase are shown to be negligible.


1990 ◽  
Vol 211 ◽  
pp. 529-556 ◽  
Author(s):  
Amy E. Alving ◽  
Alexander J. Smits ◽  
Jonathan H. Watmuff

A study was undertaken to examine the flat plate relaxation behaviour of a turbulent boundary layer recovering from 90° of strong convex curvature (δ0/R = 0.08), for a length of ≈ 90δ0 after the end of curvature, where δ0 is the boundary layer thickness at the start of the curvature. The results show that the relaxation behaviour of the mean flow and the turbulence are quite different. The mean velocity profile and skin friction coefficient asymptotically approach the unperturbed state and at the last measuring station appear to be fully recovered. The turbulence relaxation, however, occurs in several stages over a much longer distance. In the first stage, a stress ‘bore’ (a region of elevated stress) is generated near the wall, and the bore thickens with distance downstream. Eventually it fills the whole boundary layer, but the stress levels continue to rise beyond their self-preserving values. Finally the stresses begin a gradual decline, but at the last measuring station they are still well above the unperturbed levels, and the ratios of the Reynolds stresses are distorted. These results imply a reorganization of the large-scale structure into a new quasi-stable state. The long-lasting effects of curvature highlight the sensitivity of a boundary layer to its condition of formation.


This paper is concerned with the parallel flow of conducting fluid along an insulating pipe of uniform cross-section perpendicular to which a uniform magnetic field, B 0 , is applied. The cross-section is supposed to have tangents parallel to B 0 only at isolated points of its peri­meter. The density, kinematic viscosity and electrical conductivity of the fluid are denoted by ρ, v and σ, respectively. It is known (Shercliff 1962) that, in the limit B 0 → ∞, the flow may be divided into three parts: (i) a Hartmann boundary layer, thickness ~ ( ρv /σ) ½ ( B 0 cos θ ) -1 , at every point of the wall except those a t which cos θ = 0, where θ is the angle between B 0 and the normal to the wall at the point concerned, (ii) a ‘mainstream’, far from the walls, which is controlled by the Hartmann layers and in which a quasi-hydrostatic balance subsists between the Lorentz force and the applied pressure gradient driving the motion, and (iii) a complicated boundary-layer singularity, at each point of the wall at which cos θ = 0, which is controlled by the flow in regions (i) and (ii). The solutions for regions (i) and (ii) can be obtained easily by Shercliff’s methods. It is the purpose of this paper to elucidate region (iii). Here the boundary-layer thickness is O ( M 2/3 ) and extends round the periphery of the wall for a distance which is where O ( M -½ is a Hartmann number, B 0 L (σ/ ρv ) ½ , based on a typical dimension, L , of the pipe. The corresponding contribution to U , the mean flow down the duct, is of order M -2/3 . In fact, for a circular duct of radius a ( = L ), the main case discussed in this paper, it contributes the final term to the following expression: U = 64/3π U 0 [1/ M - 3π/2 M 2 + 3.273/M 7 η ] Here U 0 is the mean flow in the absence of field.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Ju Hyun Shin ◽  
Seung Jin Song

The effects of the pressure gradient and surface roughness on turbulent boundary layers have been experimentally investigated. In Part I, smooth- and rough-surface turbulent boundary layers with and without favorable pressure gradients (FPG) are presented. All of the tests have been conducted at the same Reynolds number (based on the length of the flat plate) of 900,000. Streamwise time-mean and fluctuating velocities have been measured using a single-sensor hot-wire probe. For smooth surfaces, the FPG decreases the mean velocity defect and increases the wall shear stress; however, the friction coefficient hardly changes due to the increased freestream velocity. The FPG effect on the streamwise normal Reynolds stress has been examined. The FPG increases the streamwise normal Reynolds stress for y less than 0.6 times the boundary layer thickness. With the zero pressure gradient (ZPG), the roughness increases the mean velocity defect throughout the boundary layer and increases the normal Reynolds stress for y greater than twice the average roughness height. The roughness effect on the mean velocity defect is stronger under the FPG than under the ZPG for y less than 30 times the average roughness height. For y less than 25 times the average roughness height, the roughness effect of increasing normal Reynolds stress is also stronger under the FPG than under the ZPG. Consequently, for a rough surface, the FPG increases the integrated streamwise turbulent kinetic energy, friction coefficient, roughness Reynolds number, and roughness shift. Furthermore, the FPG increases the roughness effects on the integral boundary layer parameters—the boundary layer thickness, momentum thickness, ratio of the displacement thickness to the boundary layer thickness, and shape factor. Thus, the FPG augments the roughness effects on turbulent boundary layers.


1967 ◽  
Vol 27 (4) ◽  
pp. 657-689 ◽  
Author(s):  
R. E. Kelly

In experiments concerning the instability of free shear layers, oscillations have been observed in the downstream flow which have a frequency exactly half that of the dominant oscillation closer to the origin of the layer. The present analysis indicates that the phenomenon is due to a secondary instability associated with the nearly periodic flow which arises from the finite-amplitude growth of the fundamental disturbance.At first, however, the stability of inviscid shear flows, consisting of a non-zero mean component, together with a component periodic in the direction of flow and with time, is investigated fairly generally. It is found that the periodic component can serve as a means by which waves with twice the wavelength of the periodic component can be reinforced. The dependence of the growth rate of the subharmonic wave upon the amplitude of the periodic component is found for the case when the mean flow profile is of the hyperbolic-tangent type. In order that the subharmonic growth rate may exceed that of the most unstable disturbance associated with the mean flow, the amplitude of the streamwise component of the periodic flow is required to be about 12 % of the mean velocity difference across the shear layer. This represents order-of-magnitude agreement with experiment.Other possibilities of interaction between disturbances and the periodic flow are discussed, and the concluding section contains a discussion of the interactions on the basis of the energy equation.


1999 ◽  
Vol 390 ◽  
pp. 325-348 ◽  
Author(s):  
S. NAZARENKO ◽  
N. K.-R. KEVLAHAN ◽  
B. DUBRULLE

A WKB method is used to extend RDT (rapid distortion theory) to initially inhomogeneous turbulence and unsteady mean flows. The WKB equations describe turbulence wavepackets which are transported by the mean velocity and have wavenumbers which evolve due to the mean strain. The turbulence also modifies the mean flow and generates large-scale vorticity via the averaged Reynolds stress tensor. The theory is applied to Taylor's four-roller flow in order to explain the experimentally observed reduction in the mean strain. The strain reduction occurs due to the formation of a large-scale vortex quadrupole structure from the turbulent spot confined by the four rollers. Both turbulence inhomogeneity and three-dimensionality are shown to be important for this effect. If the initially isotropic turbulence is either homogeneous in space or two-dimensional, it has no effect on the large-scale strain. Furthermore, the turbulent kinetic energy is conserved in the two-dimensional case, which has important consequences for the theory of two-dimensional turbulence. The analytical and numerical results presented here are in good qualitative agreement with experiment.


Author(s):  
Takanori Nakamura ◽  
Takatsugu Kameda ◽  
Shinsuke Mochizuki

Experiments were performed to investigate the effect of an adverse pressure gradient on the mean velocity and turbulent intensity profiles for an equilibrium boundary layer. The equilibrium boundary layer, which makes self-similar profiles, was constructed using a power law distribution of free stream velocity. The exponent of the law was adjusted to −0.188. The wall shear stress was measured with a drag balance by a floating element. The investigation of the law of the wall and the similarity of the streamwise turbulent intensity profile was made using both a friction velocity and new proposed velocity scale. The velocity scale is derived from the boundary layer equation. The mean velocity gradient profile normalized with the height and the new velocity scale exists the region where the value is almost constant. The turbulent intensity profiles normalized with the friction velocity strongly depend on the nondimensional pressure gradient near the wall. However, by mean of the local velocity scale, the profiles might be achieved to be similar with that of a zero pressure gradient.


Sign in / Sign up

Export Citation Format

Share Document