Laminar Heat Transfer in a Channel With Two Right-Angled Bends

1984 ◽  
Vol 106 (3) ◽  
pp. 591-596 ◽  
Author(s):  
R. S. Amano

A numerical study is reported on the flow and heat transfer in the channel with two right-angled bends. The modified hybrid scheme was employed to solve the steady full Navier-Stokes equations with the energy equation. The computations were performed for different step heights created in a long channel. The local heat transfer rate along the channel wall predicted by employing the present numerical model showed good agreement with the experimental data. The behavior of the flow and the heat transfer were investigated for the range of Reynolds number between 200 and 2000 and for step height ratios H/W = 1, 2, and 3. Finally, the correlation of the average Nusselt number in such channels as a function of Reynolds number is postulated.

2006 ◽  
Vol 129 (1) ◽  
pp. 106-115 ◽  
Author(s):  
A. B. Rahimi ◽  
R. Saleh

The unsteady viscous flow and heat transfer in the vicinity of an axisymmetric stagnation point of an infinite rotating circular cylinder with transpiration U0 are investigated when the angular velocity and wall temperature or wall heat flux all vary arbitrarily with time. The free stream is steady and with a strain rate of Γ. An exact solution of the Navier-Stokes equations and energy equation is derived in this problem. A reduction of these equations is obtained by the use of appropriate transformations for the most general case when the transpiration rate is also time-dependent but results are presented only for uniform values of this quantity. The general self-similar solution is obtained when the angular velocity of the cylinder and its wall temperature or its wall heat flux vary as specified time-dependent functions. In particular, the cylinder may rotate with constant speed, with exponentially increasing/decreasing angular velocity, with harmonically varying rotation speed, or with accelerating/decelerating oscillatory angular speed. For self-similar flow, the surface temperature or its surface heat flux must have the same types of behavior as the cylinder motion. For completeness, sample semi-similar solutions of the unsteady Navier-Stokes equations have been obtained numerically using a finite-difference scheme. Some of these solutions are presented for special cases when the time-dependent rotation velocity of the cylinder is, for example, a step-function. All the solutions above are presented for Reynolds numbers, Re=Γa2∕2υ, ranging from 0.1 to 1000 for different values of Prandtl number and for selected values of dimensionless transpiration rate, S=U0∕Γa, where a is cylinder radius and υ is kinematic viscosity of the fluid. Dimensionless shear stresses corresponding to all the cases increase with the increase of Reynolds number and suction rate. The maximum value of the shear stress increases with increasing oscillation frequency and amplitude. An interesting result is obtained in which a cylinder rotating with certain exponential angular velocity function and at particular value of Reynolds number is azimuthally stress-free. Heat transfer is independent of cylinder rotation and its coefficient increases with the increasing suction rate, Reynolds number, and Prandtl number. Interesting means of cooling and heating processes of cylinder surface are obtained using different rates of transpiration.


1990 ◽  
Author(s):  
B. L. Lapworth ◽  
J. W. Chew

Numerical solutions of the Reynolds-averaged Navier-Stokes equations have been used to model the influence of cobs and a bolt cover on the flow and heat transfer in a rotating cavity with an imposed radial outflow of air. Axisymmetric turbulent flow is assumed using a mixing length turbulence model. Calculations for the non-plane discs are compared with plane disc calculations and also with the available experimental data. The calculated flow structures show good agreement with the experimentally observed trends. For the cobbed and plane discs, Nusselt numbers are calculated for a combination of flow rates and rotational speeds; these show some discrepancies with the experiments, although the calculations exhibit the more consistent trend. Further calculations indicate that differences in thermal boundary conditions have a greater influence on Nusselt number than differences in disc geometry. The influence of the bolt cover on the heat transfer has also been modelled, although comparative measurements are not available.


2018 ◽  
Vol 26 (7) ◽  
pp. 112-123
Author(s):  
Jalal M. Jalil ◽  
Ghada A. Aziz ◽  
Amjed A. Kadhim

Experimental and numerical study of fluid flow and heat transfer in microchannel airflow is investigated. The study covers changing the cooling of micro-channel for the velocities and heater powers. The dimensions of the microchannel were, length = 0.1m, width = 0.001m, height = 0.0005 m. The experimental and numerical results were compared with the previous paper for velocities up to 20 m/s and heater powers up to 5 W and the comparison was acceptable. In this paper, the results were extended numerically for velocities up to 60 m/s. The numerical solution used finite volume (SIMPLE algorithm) to solve Navier Stokes equations (continuity, momentum and energy). The results show that the heat transfer coefficient increases up to 220 W/m2 oC for velocity 60 m/s.


Author(s):  
Alexander I. Leontiev ◽  
Sergey A. Isaev ◽  
Nikolai V. Kornev ◽  
Yaroslav Chudnovsky ◽  
Egon Hassel

The paper presents a comprehensive analysis of conditions for numerical simulation and physical modeling of convective heat transfer in the vicinity of dimpled surface relief. Contradictory results, unreasonable assumptions, and non-justified conclusions are marked. Based on the analysis of physical experiments the correlation between the predictions and measured data is discussed. Detailed numerical study of turbulent air flow and heat transfer in the narrow channel with three types of dimples (spherical, conic and oval) was carried out. Various mathematical and discrete models, including, those based on solving Reynolds-averaged Navier-Stokes equations (RANS/URANS-SST), and also adaptive scale models (SAS-SST) are compared. The influence of flow parameters (Reynolds number) and geometric sizes (dimple diameter, depth, radius of rounding off of an edge, channel width and height) on local and integral characteristics of flow and heat transfer (total heat output and hydraulic losses) is determined. Special attention is given to reorganizing vortex structures and flow regime (with periodic fluctuations) with increasing relative dimple depth and Reynolds number. For the first time the influence of the scale factor of a constant cross-section channel is detailed. Thermal-hydraulic characteristics of various dimpled reliefs are compared, and the advantage of an oval dimple over a spherical one is shown.


1992 ◽  
Vol 114 (1) ◽  
pp. 256-263 ◽  
Author(s):  
B. L. Lapworth ◽  
J. W. Chew

Numerical solutions of the Reynolds-averaged Navier–Stokes equations have been used to model the influence of cobs and a bolt cover on the flow and heat transfer in a rotating cavity with an imposed radial outflow of air. Axisymmetric turbulent flow is assumed using a mixing length turbulence model. Calculations for the non-plane disks are compared with plane disk calculations and also with the available experimental data. The calculated flow structures show good agreement with the experimentally observed trends. For the cobbed and plane disks, Nusselt numbers are calculated for a combination of flow rates and rotational speeds; these show some discrepancies with the experiments, although the calculations exhibit the more consistent trend. Further calculations indicate that differences in thermal boundary conditions have a greater influence on Nusselt number than differences in disk geometry. The influence of the bolt cover on the heat transfer has also been modeled, although comparative measurements are not available.


1978 ◽  
Vol 100 (4) ◽  
pp. 565-571 ◽  
Author(s):  
B. E. Launder ◽  
T. H. Massey

A scheme for handling the numerical analysis of viscous flow and heat transfer in tube banks is presented. It involves the use of a cylindrical network of nodes in the vicinity of the tubes with a Cartesian mesh covering the remainder of the flow domain. The approach has been incorporated into the numerical solving algorithm for the Navier Stokes equations of Gasman, et al. [8]. A number of demonstration calculations is presented including a numerical simulation of the staggered square bank for which Bergelin and co-workers [4, 9] have reported experimental results for pressure drop and heat transfer rate. Agreement between predicted and measured characteristics is satisfactory when account is taken of end and entry effects that are present in the experiments but necessarily omitted from the calculations. Indeed the close agreement of the laminar predictions with measurements extends to Reynolds numbers in excess of 1000, a level at which it has hitherto been supposed that turbulent motion in the fluid made a substantial contribution to friction and heat transfer.


2003 ◽  
Author(s):  
Tien-Chien Jen ◽  
Tuan-Zhou Yan ◽  
S. H. Chan

A three-dimensional computational model is developed to analyze fluid flow in a semi-porous channel. In order to understand the developing fluid flow and heat transfer process inside the semi-porous channels, the conventional Navier-Stokes equations for gas channel, and volume-averaged Navier-Stokes equations for porous media layer are adopted individually in this study. Conservation of mass, momentum and energy equations are solved numerically in a coupled gas and porous media domain in a channel using the vorticity-velocity method with power law scheme. Detailed development of axial velocity, secondary flow and temperature fields at various axial positions in the entrance region are presented. The friction factor and Nusselt number are presented as a function of axial position, and the effects of the size of porous media inside semi-porous channel are also analyzed in the present study.


Author(s):  
Luis Silva ◽  
Alfonso Ortega

Synthetic jets are generated by an equivalent inflow and outflow of fluid into a system. Even though such a jet creates no net mass flux, net positive momentum can be produced because the outflow momentum during the first half of the cycle is contained primarily in a vigorous vortex pair created at the orifice edges whereas in the backstroke, the backflow momentum is weaker, despite the fact that mass is conserved. As a consequence of this, the approach can be potentially utilized for the impingement of a cooling fluid over a heated surface. In the present study, a canonical geometry is presented, in order to study the flow and heat transfer of a purely oscillatory jet that is not influenced by the manner in which it is produced. The unsteady Navier-Stokes equations and the convection-diffusion equation were solved using a fully unsteady, two-dimensional finite volume approach in order to capture the complex time dependent flow field. A detailed analysis was performed on the correlation between the complex velocity field and the observed wall heat transfer. A fundamental frequency, in addition to the jet forcing frequency, was found, and was attributed to the coalescence of consecutive vortex pairs. In some instances, this vortex pairing can lead to zones of low heat transfer. Two point correlations showed that the Nusselt number Nu, showed stronger correlation with the vertical velocity v although the spatial-temporal dependencies are not yet fully understood. It was found that the Reynolds number and the Strouhal number, are sufficient to successfully scale the problem at larger dimensions and this is presently being exploited in order to design validation experiments using jets large enough to allow careful local measurements.


Author(s):  
V. Dakshina Murty

A numerical method based on the finite elements is applied to the cooling of pulse detonation tube using heat pipe technology. Towards this end, the fluid flow and heat transfer in the wick are modeled as flow in a porous medium. The flow is described using the so called Darcy Brinkman model which has close resemblance to the Navier-Stokes equations. It is found that for Darcy numbers less than 0.0001 the results are indistinguishable from regular Darcy flows. The shape of the heat pipe is that of a fin with the proportion of the length of the evaporator section being varied. In this study two values of this ratio have been used, namely 1 and 0.5.


2001 ◽  
Author(s):  
A. K. Chaniotis ◽  
D. Poulikakos

Abstract The present work focuses on the effect of flow pulsation on the characteristics of the planar jet impingement normally on a heated surface. Specifically, the influence of frequency, amplitude and Reynolds number of the jet is examined, concerning the instantaneous and time average convective heat transfer. The simulations are conducted using a novel, improved Smooth Particle Hydrodynamics (SPH) methodology that is based on particle discretization of the governing compressible Navier-Stokes equations. The simulation of jet impingement focuses on the quantitative description of the flow field and the energy exchange between jet and surface. The strong aerodynamic and thermal interaction that exists between the gaseous jet and the impingement surface greatly enhances the local heat transfer in the stagnation and wall jet regions as well as the average heat transfer over the surface. This study is the first step toward modeling the same process but in the presence of chemical reactions and ablation between the gaseous jet and the plate.


Sign in / Sign up

Export Citation Format

Share Document