Modeling of Continuous and Intermittent Gas Jet Impingement and Heat Transfer on a Solid Surface

Author(s):  
A. K. Chaniotis ◽  
D. Poulikakos

Abstract The present work focuses on the effect of flow pulsation on the characteristics of the planar jet impingement normally on a heated surface. Specifically, the influence of frequency, amplitude and Reynolds number of the jet is examined, concerning the instantaneous and time average convective heat transfer. The simulations are conducted using a novel, improved Smooth Particle Hydrodynamics (SPH) methodology that is based on particle discretization of the governing compressible Navier-Stokes equations. The simulation of jet impingement focuses on the quantitative description of the flow field and the energy exchange between jet and surface. The strong aerodynamic and thermal interaction that exists between the gaseous jet and the impingement surface greatly enhances the local heat transfer in the stagnation and wall jet regions as well as the average heat transfer over the surface. This study is the first step toward modeling the same process but in the presence of chemical reactions and ablation between the gaseous jet and the plate.

Author(s):  
Luis Silva ◽  
Alfonso Ortega

Synthetic jets are generated by an equivalent inflow and outflow of fluid into a system. Even though such a jet creates no net mass flux, net positive momentum can be produced because the outflow momentum during the first half of the cycle is contained primarily in a vigorous vortex pair created at the orifice edges whereas in the backstroke, the backflow momentum is weaker, despite the fact that mass is conserved. As a consequence of this, the approach can be potentially utilized for the impingement of a cooling fluid over a heated surface. In the present study, a canonical geometry is presented, in order to study the flow and heat transfer of a purely oscillatory jet that is not influenced by the manner in which it is produced. The unsteady Navier-Stokes equations and the convection-diffusion equation were solved using a fully unsteady, two-dimensional finite volume approach in order to capture the complex time dependent flow field. A detailed analysis was performed on the correlation between the complex velocity field and the observed wall heat transfer. A fundamental frequency, in addition to the jet forcing frequency, was found, and was attributed to the coalescence of consecutive vortex pairs. In some instances, this vortex pairing can lead to zones of low heat transfer. Two point correlations showed that the Nusselt number Nu, showed stronger correlation with the vertical velocity v although the spatial-temporal dependencies are not yet fully understood. It was found that the Reynolds number and the Strouhal number, are sufficient to successfully scale the problem at larger dimensions and this is presently being exploited in order to design validation experiments using jets large enough to allow careful local measurements.


Author(s):  
Prashanta Dutta ◽  
Sandip Dutta ◽  
Jamil A. Khan

The effect of two in-line inclined baffles on the local heat transfer distributions and the associated frictional losses for a turbulent flow with uniform heating from the top surface of a rectangular channel is presented for different Reynolds numbers. A combination of two baffles of same overall size is used in this experiment. The upstream baffle remains attached to the top heated surface and the position, orientation, and geometry of the other is varied. These inclined perforated baffles combine the three major heat transfer augmentation techniques, i.e., jet impingement, internal flow swirls, and boundary layer separation. The results indicate that placement of two inclined baffles augment the overall heat transfer coefficient significantly along with the local heat transfer distribution. The pattern of local Nusselt number ratio strongly depends on the position, orientation, and geometry of the second plate. Like single inclined baffles and rib mounted channels, two baffles offer more pressure drop at higher flow Reynolds number.


1984 ◽  
Vol 106 (3) ◽  
pp. 591-596 ◽  
Author(s):  
R. S. Amano

A numerical study is reported on the flow and heat transfer in the channel with two right-angled bends. The modified hybrid scheme was employed to solve the steady full Navier-Stokes equations with the energy equation. The computations were performed for different step heights created in a long channel. The local heat transfer rate along the channel wall predicted by employing the present numerical model showed good agreement with the experimental data. The behavior of the flow and the heat transfer were investigated for the range of Reynolds number between 200 and 2000 and for step height ratios H/W = 1, 2, and 3. Finally, the correlation of the average Nusselt number in such channels as a function of Reynolds number is postulated.


1995 ◽  
Vol 117 (1) ◽  
pp. 85-94 ◽  
Author(s):  
D. H. Wolf ◽  
R. Viskanta ◽  
F. P. Incropera

This study investigates the relationship between jet turbulence and local impingement heat transfer for a free-surface, planar jet of water. Employing a thermal anemometer system, measurements of the mean velocity and turbulence intensity are reported at different streamwise and spanwise locations throughout the jet. The flow conditions at the nozzle discharge were controlled by using different nozzle designs (parallel-plate and converging) and flow manipulators (wire grid and screens). Measurements of the velocity gradient along the impingement surface, known to influence heat transfer from analytical considerations of a laminar impinging jet, were also made for the same sets of nozzle conditions. The test matrix also included variations in the Reynolds number (23,000 and 46,000) and distance from the nozzle discharge to the surface (0 to 30 nozzle widths). The local heat transfer results corresponding to the flow structure measurements are reported in Part 2 of this paper.


Author(s):  
Ludovic Osmar ◽  
Ste´phane Vincent ◽  
Jean-Paul Caltagirone ◽  
Gabriel Cavallaro

The cooling process controlled by an impinging unsubmerged jet on a heated surface is tackled. Numerical studies about cooling by a two-phase incompressible turbulent flow have not been significantly treated in the literature and are considered here. The liquid jet cooling method is modelled by associating the energy equation with a multiphase incompressible turbulent flow model, the final objective being to be able to predict the heat transfer coefficient between the cooling liquid jet and the impinged surface. Turbulence is modelled by Large Eddy Simulation (LES). It is coupled with an Eulerian Volume of Fluid (VOF) method to follow the evolution of the interface between two fluids. In a first part, a work of validation is led and the model is compared to experimental results available in the literature [1]. Convective heat transfer induced by a planar jet of water impinging normally onto a flat heated surface is simulated. Knowing the imposed heat flux, local heat transfer coefficients are deduced from predicted surface temperatures. The next step will be to study cooling due to a cylindrical jet of water impinging onto a heated semi-hemispherical concave surface.


1987 ◽  
Vol 109 (2) ◽  
pp. 446-453 ◽  
Author(s):  
L. Neiswanger ◽  
G. A. Johnson ◽  
V. P. Carey

Measured local heat transfer data and the results of flow visualization studies are reported for cross-flow mixed convection in a rectangular enclosure with restricted inlet and outlet openings at high Rayleigh number. In this study, experiments using water as the test fluid were conducted in a small-scale test section with uniformly heated vertical side walls and an adiabatic top and bottom. As the flow rate through the enclosure increased, the enhancement of heat transfer, above that for natural convection alone, also increased. The variation of the local heat transfer coefficient over the heated surface was found to be strongly affected by the recirculation of portions of the forced flow within the enclosure. Mean heat transfer coefficients are also presented which were calculated by averaging the measured local values over the heated surface. A correlation for the mean heat transfer coefficient is also proposed which agrees very well with the experimentally determined values. A method of predicting the flow regime in this geometry for specified heating and flow conditions is also discussed.


2000 ◽  
Author(s):  
M. Greiner ◽  
P. F. Fischer ◽  
H. M. Tufo

Abstract Two-dimensional Navier-Stokes simulations of heat and momentum transport in an intermittently grooved passage are performed using the spectral element technique for the Reynolds number range 600 ≤ Re ≤ 1800. The computational domain has seven contiguous transverse grooves cut symmetrically into opposite walls, followed by a flat section with the same length. Periodic inflow/outflow boundary conditions are employed. The development and decay of unsteady flow is observed in the grooved and flat sections, respectively. The axial variation of the unsteady component of velocity is compared to the local heat transfer, shear stress and pressure gradient. The results suggest that intermittently grooved passages may offer even higher heat transfer for a given pumping power than the levels observed in fully grooved passages.


Author(s):  
Luca Mangani ◽  
David Roos Launchbury ◽  
Ernesto Casartelli ◽  
Giulio Romanelli

The computation of heat transfer phenomena in gas turbines plays a key role in the continuous quest to increase performance and life of both component and machine. In order to assess different cooling approaches computational fluid dynamics (CFD) is a fundamental tool. Until now the task has often been carried out with RANS simulations, mainly due to the relatively short computational time. The clear drawback of this approach is in terms of accuracy, especially in those situations where averaged turbulence-structures are not able to capture the flow physics, thus under or overestimating the local heat transfer. The present work shows the development of a new explicit high-order incompressible solver for time-dependent flows based on the open source C++ Toolbox OpenFOAM framework. As such, the solver is enabled to compute the spatially filtered Navier-Stokes equations applied in large eddy simulations for incompressible flows. An overview of the development methods is provided, presenting numerical and algorithmic details. The solver is verified using the method of manufactured solutions, and a series of numerical experiments is performed to show third-order accuracy in time and low temporal error levels. Typical cooling devices in turbomachinery applications are then investigated, such as the flow over a turbulator geometry involving heated walls and a film cooling application. The performance of various sub-grid-scale models are tested, such as static Smagorinsky, dynamic Lagrangian, dynamic one-equation turbulence models, dynamic Smagorinsky, WALE and sigma-model. Good results were obtained in all cases with variations among the individual models.


2021 ◽  
Author(s):  
Karan Anand

This research provides a computational analysis of heat transfer due to micro jet-impingement inside a gas turbine vane. A preliminary-parametric analysis of axisymmetric single jet was reported to better understand micro jet-impingement. In general, it was seen that as the Reynolds number increased the Nusselt number values increased. The jet to target spacing had a considerably lower impact on the heat transfer rates. Around 30% improvement was seen by reducing the diameter to half while changing the shape to an ellipse saw 20.8% improvement in Nusselt value. The numerical investigation was then followed by studying the heat transfer characteristics in a three-dimensional, actual-shaped turbine vane. Effects of jet inclination showed enhanced mixing and secondary heat transfer peaks. The effect of reducing the diameter of the jets to 0.125 mm yielded 55% heat transfer improvements compared to 0.51 mm; the tapering effect also enhanced the local heat transfer values as local velocities at jet exit increased.


1984 ◽  
Vol 106 (1) ◽  
pp. 27-33 ◽  
Author(s):  
S. A. Striegl ◽  
T. E. Diller

An experimental study was done to determine the effect of entrainment temperature on the local heat transfer rates to single and multiple, plane, turbulent impinging air jets. To determine the effect of entrainment of the surrounding fluid, the single jet issued into an environment at a temperature which was varied between the initial temperature of the jet and the temperature of the heated impingement plate. An analytical model was used to correlate the measured heat transfer rate to a single jet. The effect of the entrainment temperature in a single jet was then used to analyze the effect of entrainment from the recirculation region between the jets of a jet array. Using the measured temperature in the recirculation region to include the effect of entrainment, the single jet correlations were successfully applied to multiple jets.


Sign in / Sign up

Export Citation Format

Share Document