Axisymmetric Stagnation—Point Flow and Heat Transfer of a Viscous Fluid on a Rotating Cylinder With Time-Dependent Angular Velocity and Uniform Transpiration

2006 ◽  
Vol 129 (1) ◽  
pp. 106-115 ◽  
Author(s):  
A. B. Rahimi ◽  
R. Saleh

The unsteady viscous flow and heat transfer in the vicinity of an axisymmetric stagnation point of an infinite rotating circular cylinder with transpiration U0 are investigated when the angular velocity and wall temperature or wall heat flux all vary arbitrarily with time. The free stream is steady and with a strain rate of Γ. An exact solution of the Navier-Stokes equations and energy equation is derived in this problem. A reduction of these equations is obtained by the use of appropriate transformations for the most general case when the transpiration rate is also time-dependent but results are presented only for uniform values of this quantity. The general self-similar solution is obtained when the angular velocity of the cylinder and its wall temperature or its wall heat flux vary as specified time-dependent functions. In particular, the cylinder may rotate with constant speed, with exponentially increasing/decreasing angular velocity, with harmonically varying rotation speed, or with accelerating/decelerating oscillatory angular speed. For self-similar flow, the surface temperature or its surface heat flux must have the same types of behavior as the cylinder motion. For completeness, sample semi-similar solutions of the unsteady Navier-Stokes equations have been obtained numerically using a finite-difference scheme. Some of these solutions are presented for special cases when the time-dependent rotation velocity of the cylinder is, for example, a step-function. All the solutions above are presented for Reynolds numbers, Re=Γa2∕2υ, ranging from 0.1 to 1000 for different values of Prandtl number and for selected values of dimensionless transpiration rate, S=U0∕Γa, where a is cylinder radius and υ is kinematic viscosity of the fluid. Dimensionless shear stresses corresponding to all the cases increase with the increase of Reynolds number and suction rate. The maximum value of the shear stress increases with increasing oscillation frequency and amplitude. An interesting result is obtained in which a cylinder rotating with certain exponential angular velocity function and at particular value of Reynolds number is azimuthally stress-free. Heat transfer is independent of cylinder rotation and its coefficient increases with the increasing suction rate, Reynolds number, and Prandtl number. Interesting means of cooling and heating processes of cylinder surface are obtained using different rates of transpiration.

2004 ◽  
Vol 126 (6) ◽  
pp. 997-1005 ◽  
Author(s):  
R. Saleh ◽  
A. B. Rahimi

The unsteady viscous flow and heat transfer in the vicinity of an axisymmetric stagnation point of an infinite moving cylinder with time-dependent axial velocity and with uniform normal transpiration Uo are investigated. The impinging free stream is steady and with a constant strain rate k¯. An exact solution of the Navier–Stokes equations and energy equation is derived in this problem. A reduction of these equations is obtained by use of appropriate transformations for the most general case when the transpiration rate is also time-dependent but results are presented only for uniform values of this quantity. The general self-similar solution is obtained when the axial velocity of the cylinder and its wall temperature or its wall heat flux vary as specified time-dependent functions. In particular, the cylinder may move with constant speed, with exponentially increasing–decreasing axial velocity, with harmonically varying axial speed, or with accelerating–decelerating oscillatory axial speed. For self-similar flow, the surface temperature or its surface heat flux must have the same types of behavior as the cylinder motion. For completeness, sample semisimilar solutions of the unsteady Navier–Stokes and energy equations have been obtained numerically using a finite-difference scheme. Some of these solutions are presented for special cases when the time-dependent axial velocity of the cylinder is a step-function, and a ramp function. All the solutions above are presented for Reynolds numbers, Re=ka¯2/2υ, ranging from 0.1 to 100 for different values of dimensionless transpiration rate, S=Uo/ka¯, where a is cylinder radius and υ is kinematic viscosity of the fluid. Absolute value of the shear-stresses corresponding to all the cases increase with the increase of Reynolds number and suction rate. The maximum value of the shear- stress increases with increasing oscillation frequency and amplitude. An interesting result is obtained in which a cylinder moving with certain exponential axial velocity function at any particular value of Reynolds number and suction rate is axially stress-free. The heat transfer coefficient increases with the increasing suction rate, Reynolds number, Prandtl number, oscillation frequency and amplitude. Interesting means of cooling and heating processes of cylinder surface are obtained using different rates of transpiration. It is shown that a cylinder with certain type of exponential wall temperature exposed to a temperature difference has no heat transfer.


2005 ◽  
Author(s):  
Ningli Liu ◽  
Rene Chevray ◽  
Gerald A. Domoto ◽  
Elias Panides

A finite difference numerical approach for solving slightly compressible, time-dependent, viscous laminar flow is presented in this study. Simplified system of Navier-Stokes equations and energy equation are employed in the study in order to perform more efficient numerical calculations. Fluid flow and heat transfer phenomena in two dimensional microchannels are illustrated numerically in this paper. This numerical approach provides a complete numerical simulation of the development of the fluid flow and the temperature profiles through multi-dimensional microchannels.


1984 ◽  
Vol 106 (3) ◽  
pp. 591-596 ◽  
Author(s):  
R. S. Amano

A numerical study is reported on the flow and heat transfer in the channel with two right-angled bends. The modified hybrid scheme was employed to solve the steady full Navier-Stokes equations with the energy equation. The computations were performed for different step heights created in a long channel. The local heat transfer rate along the channel wall predicted by employing the present numerical model showed good agreement with the experimental data. The behavior of the flow and the heat transfer were investigated for the range of Reynolds number between 200 and 2000 and for step height ratios H/W = 1, 2, and 3. Finally, the correlation of the average Nusselt number in such channels as a function of Reynolds number is postulated.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


1978 ◽  
Vol 100 (4) ◽  
pp. 565-571 ◽  
Author(s):  
B. E. Launder ◽  
T. H. Massey

A scheme for handling the numerical analysis of viscous flow and heat transfer in tube banks is presented. It involves the use of a cylindrical network of nodes in the vicinity of the tubes with a Cartesian mesh covering the remainder of the flow domain. The approach has been incorporated into the numerical solving algorithm for the Navier Stokes equations of Gasman, et al. [8]. A number of demonstration calculations is presented including a numerical simulation of the staggered square bank for which Bergelin and co-workers [4, 9] have reported experimental results for pressure drop and heat transfer rate. Agreement between predicted and measured characteristics is satisfactory when account is taken of end and entry effects that are present in the experiments but necessarily omitted from the calculations. Indeed the close agreement of the laminar predictions with measurements extends to Reynolds numbers in excess of 1000, a level at which it has hitherto been supposed that turbulent motion in the fluid made a substantial contribution to friction and heat transfer.


2013 ◽  
Vol 734 ◽  
pp. 275-316 ◽  
Author(s):  
Rashad Moarref ◽  
Ati S. Sharma ◽  
Joel A. Tropp ◽  
Beverley J. McKeon

AbstractWe study the Reynolds-number scaling and the geometric self-similarity of a gain-based, low-rank approximation to turbulent channel flows, determined by the resolvent formulation of McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382), in order to obtain a description of the streamwise turbulence intensity from direct consideration of the Navier–Stokes equations. Under this formulation, the velocity field is decomposed into propagating waves (with single streamwise and spanwise wavelengths and wave speed) whose wall-normal shapes are determined from the principal singular function of the corresponding resolvent operator. Using the accepted scalings of the mean velocity in wall-bounded turbulent flows, we establish that the resolvent operator admits three classes of wave parameters that induce universal behaviour with Reynolds number in the low-rank model, and which are consistent with scalings proposed throughout the wall turbulence literature. In addition, it is shown that a necessary condition for geometrically self-similar resolvent modes is the presence of a logarithmic turbulent mean velocity. Under the practical assumption that the mean velocity consists of a logarithmic region, we identify the scalings that constitute hierarchies of self-similar modes that are parameterized by the critical wall-normal location where the speed of the mode equals the local turbulent mean velocity. For the rank-1 model subject to broadband forcing, the integrated streamwise energy density takes a universal form which is consistent with the dominant near-wall turbulent motions. When the shape of the forcing is optimized to enforce matching with results from direct numerical simulations at low turbulent Reynolds numbers, further similarity appears. Representation of these weight functions using similarity laws enables prediction of the Reynolds number and wall-normal variations of the streamwise energy intensity at high Reynolds numbers (${Re}_{\tau } \approx 1{0}^{3} {\unicode{x2013}} 1{0}^{10} $). Results from this low-rank model of the Navier–Stokes equations compare favourably with experimental results in the literature.


2003 ◽  
Author(s):  
Tien-Chien Jen ◽  
Tuan-Zhou Yan ◽  
S. H. Chan

A three-dimensional computational model is developed to analyze fluid flow in a semi-porous channel. In order to understand the developing fluid flow and heat transfer process inside the semi-porous channels, the conventional Navier-Stokes equations for gas channel, and volume-averaged Navier-Stokes equations for porous media layer are adopted individually in this study. Conservation of mass, momentum and energy equations are solved numerically in a coupled gas and porous media domain in a channel using the vorticity-velocity method with power law scheme. Detailed development of axial velocity, secondary flow and temperature fields at various axial positions in the entrance region are presented. The friction factor and Nusselt number are presented as a function of axial position, and the effects of the size of porous media inside semi-porous channel are also analyzed in the present study.


Author(s):  
V. Dakshina Murty

A numerical method based on the finite elements is applied to the cooling of pulse detonation tube using heat pipe technology. Towards this end, the fluid flow and heat transfer in the wick are modeled as flow in a porous medium. The flow is described using the so called Darcy Brinkman model which has close resemblance to the Navier-Stokes equations. It is found that for Darcy numbers less than 0.0001 the results are indistinguishable from regular Darcy flows. The shape of the heat pipe is that of a fin with the proportion of the length of the evaporator section being varied. In this study two values of this ratio have been used, namely 1 and 0.5.


1990 ◽  
Author(s):  
B. L. Lapworth ◽  
J. W. Chew

Numerical solutions of the Reynolds-averaged Navier-Stokes equations have been used to model the influence of cobs and a bolt cover on the flow and heat transfer in a rotating cavity with an imposed radial outflow of air. Axisymmetric turbulent flow is assumed using a mixing length turbulence model. Calculations for the non-plane discs are compared with plane disc calculations and also with the available experimental data. The calculated flow structures show good agreement with the experimentally observed trends. For the cobbed and plane discs, Nusselt numbers are calculated for a combination of flow rates and rotational speeds; these show some discrepancies with the experiments, although the calculations exhibit the more consistent trend. Further calculations indicate that differences in thermal boundary conditions have a greater influence on Nusselt number than differences in disc geometry. The influence of the bolt cover on the heat transfer has also been modelled, although comparative measurements are not available.


1988 ◽  
Vol 186 ◽  
pp. 285-301 ◽  
Author(s):  
C. J. Lawrence ◽  
S. Weinbaum

The motion of a flat body towards a parallel plane surface in incompressible fluid is considered both in the presence and absence of an applied force for a non-vanishing initial velocity. In the inviscid limit, a first integral of the equations is obtained and analytic solutions are presented for the cases of finite body inertia with zero applied force and finite applied force with negligible body inertia. In the former case when the ratio of body inertia to fluid inertia is large, a singular behaviour is observed in the arrest of the body before impact wherein the time-dependent pressure and radial velocity of the fluid exhibit a sharp peak and there is a large transfer of kinetic energy from the body to the thin fluid layer. For a real fluid, a general procedure is described to obtain solutions at arbitrary Reynolds number for naturally occurring initial velocity conditions. Solutions to the full Navier-Stokes equations are obtained for an arbitrary Reynolds number based on gap height which are valid provided the flow remains laminar and the gap height is small. In general, the equations of motion of the body and fluid are both dynamically and kinematically coupled. The dynamic coupling, however, is removed when the body inertia is neglected. In particular, the cases of hydrodynamic arrest with zero applied force, and draining of the fluid under a constant applied force are considered. The natural initial conditions lead to a new exact similarity solution of the Navier-Stokes equations which is valid for an instantaneous time-dependent Re based on gap height of greater than approximately 100, wherein the top and bottom boundary layers remain distinct. The longer time portions of the motion and the final arrest are described by a numerical calculation for intermediate Reynolds number and a low-Reynolds-number analysis.


Sign in / Sign up

Export Citation Format

Share Document