Impingement Heat Transfer Within Arrays of Circular Jets: Part 1—Effects of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacings

1987 ◽  
Vol 109 (4) ◽  
pp. 872-879 ◽  
Author(s):  
N. T. Obot ◽  
T. A. Trabold

An experimental study of the effects of three jet-induced crossflow schemes on impingement heat transfer was made. The schemes, referred to as minimum, intermediate, and maximum crossflow correspond, successively, to unrestricted flow of spent air away from the target surface, restriction of the flow to leave through two opposite sides, and through one side of a rectangular impingement surface. The study covered jet Reynolds number, jet-to-surface spacing, and open area of 1000–21,000, 2–16 jet hole diameters, and 1–4 percent, respectively. The best heat transfer performance is obtained with the minimum scheme, intermediate and complete crossflow being associated with varying degrees of degradation. For a given blower power, heat transfer can be enhanced markedly by having greater number of jets over a fixed target area; notably when working with the minimum scheme at narrow jet-to-target spacings.

Author(s):  
Sanskar S. Panse ◽  
Srivatsan Madhavan ◽  
Prashant Singh ◽  
Srinath V. Ekkad

Abstract This paper presents heat transfer characteristics of lobed nozzles, three different lobe configurations viz. three-, four- and six-lobe jets have been tested over a range of Reynolds numbers (based on the effective jet diameter, de) between 8000 and 16000 and normalized jet-to-target spacings (z/de) of 1.6, 3.2 and 4.8. The heat transfer results of lobed configurations were compared to the baseline configuration of circular jets. Steady-state infrared thermography (IRT) experiments were carried out for convective heat transfer coefficient calculations. Experimental results show that the three lobe configuration has a superior heat transfer performance compared to other configurations. Jet-to-target plate standoff distance had drastic effect on the heat transfer performance and contour plots for the lobed nozzles, as heat transfer performance diminished with increase in z/de. For the lobe configurations, with increase in jet-to-target spacing (z/de), the heat transfer coefficient maps tend towards a more circular profile due to the effect of jet diffusion.


Author(s):  
Han-Chieh Chiu ◽  
Jer-Huan Jang ◽  
Wei-Mon Yan

In this work, the effects of jet geometry and the arrangement of film holes on the target plate on the impinging heat transfer are experimentally investigated in detail. A liquid crystal thermograph technology is employed in this study. The aspect ratios (AR) of elliptical jet with five different values, 4, 2, 1, 0.5, and 0.25, jet Reynolds number ranging from 2000 to 4000, and jet-to-target spacing ranging from 1.5 to 4.5 are considered to investigate impingement heat transfer performance. In addition, three arrangements of film hole on the target plates, named side-, middle- and staggered-types, are tested, respectively. The experimental results show that the Nu increases with the increase of jet Reynolds number. Better heat transfer is noted for the cases with smaller jet-to-plate spacing. For the effect of the arrangement of pores on the target surface, the heat transfer on middle-type plate is more significant than the other two for smaller jet-to-plate spacing. As for the effect of aspect ratio, results indicate that the optimal heat transfer performance is found with circular jet of AR = 1.


Author(s):  
Sin Chien Siw ◽  
Nicholas Miller ◽  
Maryanne Alvin ◽  
Minking Chyu

The current detailed experimental study focuses on the optimization of heat transfer performance through jet impingement by varying the coolant flow rate to each individual jet. The test section consists of an array of jets, each jet individually fed and metered separately, that expel coolant into the channel and exit through one end. The diameter D, height-to-diameter H/D, and jet spacing-to-diameter S/D are all held constant at 9.53 mm, 2, and 4, respectively. Upon defining the optimum flow rate for each jet, varying diameter jet plates are designed and tested using a similar test setup with the addition of a plenum. Two test cases are conducted by varying the jet diameter within 10% compared to the benchmark jet diameter, 9.53 mm. The Reynolds number, which is based on hydraulic diameter of the channel and total mass flow rate entering the channel, ranges from approximately 52,000 up to 78,000. The transient liquid crystal technique is employed in this study to determine the local and average heat transfer coefficient distributions on the target plate. Commercially available computational fluid dynamics software, ansys cfx, is used to qualitatively correlate the experimental results and to fully understand the flow field distributions within the channel. The results revealed that varying the jet flow rates, total flow varied by approximately ±5% from that of the baseline case, the heat transfer enhancement on the target surface is enhanced up to approximately 35%. However, when transitioning to the varying diameter jet plate, this significant enhancement is suppressed due to the nature of flow distribution from the plenum, combined with the complicated crossflow effects.


Author(s):  
Zhiqiang Guo ◽  
Mei Zheng ◽  
Yinze Liu ◽  
Wei Dong

In this paper, experimental and numerical investigations are both conducted to study the effect of circular dimples on the heat transfer performance of jets impingement. The circular dimples, set as one kind of surface structures on flat plate, have the same diameter of 3 mm but with different depths: 1.2 mm, 0.9 mm and 0.6 mm. Furthermore, in order to understand the mechanism of impingement heat transfer with circular dimples deeply, three different jet locations are studied in this paper. For the experimental investigations, the infrared thermography is applied to gain the temperature distributions on the flat plate. A comparison is made between the numerical results and experimental data, which indicates that they are in good agreement. The numerical results show that the dimples on the plates have significant effects on the impingement heat transfer. The overall averaged and local heat transfer coefficient in a single jet impingement on the smooth and dimpled plates are obtained and compared, as well as the flow structure. The effect of the dimples on the heat transfer performance of the target plates is different for different locations of dimples. Velocity distributions and streamlines near the target plates are also shown to explain the heat transfer characteristics. From the investigations, for the dimpled plates with different depths, the deeper dimples have the better averaged heat transfer on the target plates. The dimpled surface enhances the heat transfer performance obviously with H/D of 1.5. However, with the distance between the impinging hole and the target plate increasing, the transition location of the impact zone and the wall jet zone advances and the enhancement effect decreases. Moreover, further downstream region on the dimpled plates shows lower heat transfer enhancement effect and the effect becomes approximately invisible after X/D is larger than 3. The fluid in the dimples with different depths has the same streamline. The heat transfer enhancement at the downstream of dimples is better than the upstream.


Author(s):  
Chenglong Wang ◽  
Lei Wang ◽  
Bengt Sundén ◽  
Johan Revstedt

Jet impingement cooling is commonly used in gas turbines. Usually the spent air from the upstream jets forms a cross-flow past the downstream jets, which degrades their heat transfer performance. In the present study, a new method was proposed to promote the jet penetration and enhance the impingement heat transfer. By placing a delta-winglet vortex generator pair (VGP) in the cross-flow upstream of the jet nozzle, it is found that the impingement heat transfer on the target wall is significantly enhanced. The stagnation region shifts upstream and expands compared to the original case. The stagnation and area-averaged Nusselt numbers also increased. The effects of the distance between the VGP and the jet nozzle l1 were also investigated. The optimal spacing l1 is suggested to be 4d, giving the best heat transfer performance. This study sheds new light on the enhancement of jet impingement heat transfer in a cross-flow.


Author(s):  
M. E. Taslim ◽  
Y. Pan ◽  
K. Bakhtari

Compatible with the external contour of the turbine airfoils at their leading edge, the leading-edge cooling cavities have a complex cross-sectional shape. To enhance the heat transfer coefficient on the leading-edge wall of these cavities, the cooling flow in some designs enters the leading-edge cavity from the adjacent cavity through a series of crossover holes on the partition wall between the two cavities. The crossover jets then impinge on the concave leading-edge wall and exit through the showerhead film holes, gill film holes on the pressure and suction sides, and, in some cases, form a crossflow in the leading-edge cavity and move toward the airfoil tip. The main objective of this investigation was to study the effects that racetrack crossover jets, in the presence of film holes on the target surface, have on the impingement heat transfer coefficient. Available data in open literature are mostly for impingement on a flat smooth surface with no representation of the film holes. This investigation covered new features in airfoil leading-edge cooling concept such as impingement with racetrack shaped holes on a roughened target surface with a row of holes representing the leading-edge showerhead film holes. Results of the circular crossover jets impinging on these leading-edge surface geometries with and without showerhead holes were reported by these authors previously. In this paper, however, the experimental results are presented for the impingement of racetrack-shaped crossover jets on a concave surface with showerhead film holes. The investigated target surface geometries were : (1) a smooth wall, (2) a wall roughened with big conical bumps, (3) a wall roughened with smaller conical bumps and (4) a wall roughened with tapered radial ribs. The tests were run for a range of flow arrangements and jet Reynolds numbers and the results were compared with those of round crossover jets. The major conclusions of this study are: (a) for a given jet Reynolds number, the racetrack crossover jets produce a higher impingement heat transfer coefficient than the circular jets, (b) the overall heat transfer performance of 0° racetrack crossover jets is superior to that of 45° racetrack crossover jets and (c) there is a heat transfer enhancement benefit in roughening the target surface. With the presence of showerhead holes, the enhancement is due to both the impingement heat transfer coefficient and the heat transfer area increase.


1987 ◽  
Vol 109 (4) ◽  
pp. 594-601 ◽  
Author(s):  
T. A. Trabold ◽  
N. T. Obot

An experimental investigation was carried out to determine the effects of jet-induced crossflow on impingement heat transfer from rough surfaces. The jets impinged on surfaces having repeated square ribs, with transverse flow of the spent air. Two crossflow schemes were tested: discharge of the spent air through two opposite sides (intermediate crossflow) and through one side (complete or maximum crossflow) of the rectangular impingement surface. The rib height was fixed at 0.813 mm, while the pitch-to-height ratio (p/e) was varied between 6 and 10. The study covered standoff spacing and jet Reynolds number in the range 2 to 16 jet hole diameters and 1300 to 21,000, respectively. Three nozzle plates, having 48, 90, and 180 square-edged holes, were tested. For the maximum crossflow scheme, the presence of roughness results in small upstream reductions in heat transfer coefficient, with marked improvement in the downstream section; indicating that roughness elements can be used to compensate for the degradation that is usually associated with impingement on smooth surfaces.


2021 ◽  
Author(s):  
Tao Guo ◽  
Yun-Peng Ben ◽  
Yu-Chao Liu ◽  
Cun-Liang Liu ◽  
Hui-Ren Zhu

Abstract The paper proposes a technique of using advanced pin fins on a target plate to improve the impingement heat transfer performance in an array impingement cooling system. The initial shape of the advanced pin fin is a frustum of a cone. In order to enhance heat transfer and reduce flow resistance, the upper and lower sharp edges of the frustum of a cone are rounded. There are arrays of film holes on the target plate, and the influence of the crossflow is not considered. The flow and heat transfer characteristics of the array impingement flat plate and advanced pin fin plate were studied by numerical simulation. During the numerical simulation, the Reynolds number was varied from 2000 to 19500, the jet-to-plate spacing Z/d from 3 to 6 (d = 0.50mm) and the jet hole diameter d is 0.50 mm, 0.75 mm and 1.00 mm respectively. The results show that the averaged Nusselt number values for the advanced pin fin target plate showed an increase ranging from 15% to 20% over those for the flat target plate, It is generally considered that the enhancement of heat transfer is mainly due to the enhancement of fluid disturbance by the pin fins. However, by changing the size of the pin fins, it is found that the enhancement of heat transfer is mainly caused by the increase of heat transfer area, and the influence of enhancing the disturbance is not significant. The pressure loss is little higher than that of the flat plate. The averaged Nusselt number values for the advanced pin fin target plate decreases with the increase of the jet-to-plate spacing, and increases with the increase of Reynolds number. At the same mass flow rate, the averaged heat transfer performance of the pin fin target plate decreases with the increase of jet hole diameter, and the results show that the averaged heat transfer performance of 0.5mm jet hole diameter is the best.


Sign in / Sign up

Export Citation Format

Share Document