Heat Transfer During Melting and Solidification of Metals

1988 ◽  
Vol 110 (4b) ◽  
pp. 1205-1219 ◽  
Author(s):  
R. Viskanta

Recent advances in the understanding of melting and solidification heat transfer in metals and alloys are discussed. Since heat transfer is generally the rate-determining process, the emphasis in the paper is on fundamental heat transfer processes during solid–liquid phase transformation and comparison between mathematical-numerical model predictions with experimental data. After a brief discussion of theoretical considerations, unidirectional and multidirectional melting and solidification processes are reviewed. The important role played by buoyancy-driven fluid flow is discussed and problem areas needing research attention are identified.

Author(s):  
Ihab H. Farag ◽  
Joseph L. Vaillancourt

Data was obtained from the combustion of coal derived fuels in a 30 inch diameter, 4 foot long bench scale atmospheric unit fueled with CWF. The data is presented and compared with model predictions of ash, temperature, and mole fraction distributions. A computer model was developed to simulate the heat transfer processes taking place in a gas turbine combustor (GTC) burning a coal water fuel (CWF). It is to predict the species and temperature distribution, the heat flux patterns, and the contribution of both convection and radiation to the total heat transfer rate. This model was verified in part 1 of this paper.


2021 ◽  
Author(s):  
Dasith Liyanage ◽  
Suk-Chun Moon ◽  
Ajith S. Jayasekare ◽  
Abheek Basu ◽  
Madeleine Du Toit ◽  
...  

Abstract High-temperature laser-scanning confocal microscopy (HT-LSCM) has proven to be an excellent experimental technique through in-situ observations of high temperature phase transformation to study kinetics and morphology using thin disk steel specimens. A 1.0 kW halogen lamp, within the elliptical cavity of the HT-LSCM furnace radiates heat and imposes a non-linear temperature profile across the radius of the steel sample. This local temperature profile when exposed at the solid/liquid interface determines the kinetics of solidification and phase transformation morphology. A two-dimensional numerical heat transfer model for both isothermal and transient conditions is developed for a concentrically solidifying sample. The model can accommodate solid/liquid interface velocity as an input parameter under concentric solidification with cooling rates up to 100 K/min. The model is validated against a commercial finite element analysis software package, Strand7, and optimized with experimental data obtained under near-to equilibrium conditions. The validated model can then be used to define the temperature landscape under transient heat transfer conditions.


2021 ◽  
Vol 297 ◽  
pp. 01008
Author(s):  
Ibtissam Lamaamar ◽  
Amine Tilioua ◽  
Zaineb Benzaid ◽  
Abdelouahed Ait Msaad ◽  
Moulay Ahmed Hamdi Alaoui

The high operating temperature of the photovoltaic (PV) modules decreases significantly its efficiency. The integration of phase change material (PCM) is one of the feasible techniques for reducing the operating temperature of the PV module. A numerical simulation of the PV module with PCM and without PCM has been realized. The thermal behavior of the PV module was evaluated at the melting and solidification processes of PCM. The results show that the integration of RT35HC PCM with a thickness of 4 cm reduces the temperature of the PV module by 8 °C compared to the reference module. Compared the RT35 and RT35HC, we found that the latent heat has a significant effect on the PCM thermal comportment. Furthermore, it has been found that the thermal resistance of the layers plays an important role to dissipate the heat from the PV cells to the PCM layer, consequently improving the heat transfer inside the PV/PCM system.


1994 ◽  
Vol 116 (2) ◽  
pp. 369-380 ◽  
Author(s):  
P. Tekriwal

Standard and extended k–ε turbulence closure models have been employed for three-dimensional heat transfer calculations for radially outward flow in rectangular and square cooling passages rotating in orthogonal mode. The objective of this modeling effort is to validate the numerical model in an attempt to fill the gap between model predictions and the experimental data for heat transfer in rotating systems. While the trend of heat transfer predictions by the standard k–ε turbulence model is satisfactory, the differences between the data and the predictions are approximately 30 percent or so in the case of high rotation number flow. The extended k–ε turbulence model takes an approach where an extra “source” term based on a second time scale of the turbulent kinetic energy production rate is added to the equation for the dissipation rate of turbulent kinetic energy. This yields a more effective calculation of turbulent kinetic energy as compared to the standard k–ε turbulence model in the case of high rotation number and high density ratio flow. As a result, comparison with the experimental data available in the literature shows that an improvement of up to a significant 15 percent (with respect to data) in the heat transfer coefficient predictions is achieved over the standard k–ε model in the case of high rotation number flow. Comparisons between the results of the standard k–ε model and the extended formulation are made at different rotation numbers, different Reynolds numbers, and varying temperature ratio. The results of the extended k–ε turbulence model are either as good or better than those of the standard k–ε model in all these cases of parametric study. Thus, the extended k–ε turbulence model proves to be more general and reduces the discrepancy between the model predictions and the experimental data for heat transfer in rotating systems.


Fractals ◽  
2008 ◽  
Vol 16 (01) ◽  
pp. 1-9 ◽  
Author(s):  
BOQI XIAO ◽  
ZONGCHI WANG ◽  
BOMING YU

A fractal model for the subcooled nucleate pool boiling heat transfer is proposed in this paper. The analytical expressions for the subcooled nucleate pool boiling heat transfer are derived based on the fractal distribution of nucleation sites on boiling surfaces. The proposed fractal model for the subcooled nucleate pool boiling heat transfer is found to be a function of wall superheat, liquid subcooling, fractal dimension, the minimum and maximum active cavity size, the contact angle and physical properties of fluid. No additional/new empirical constant is introduced, and the proposed model contains less empirical constants than the conventional models. The model predictions are compared with the existing experimental data, and fair agreement between the model predictions and experimental data is found for different liquid subcoolings.


1995 ◽  
Vol 2 (1) ◽  
pp. 51-58
Author(s):  
P. Tekriwal

The objective of the current modeling effort is to validate the numerical model and improve upon the prediction of heat transfer in rotating systems. Low-Reynolds number turbulence model (without the wall function) has been employed for three-dimensional heat transfer predictions for radially outward flow in a square cooling duct rotating about an axis perpendicular to its length. Computations are also made using the standard and extended high-Reynolds number kturbulence models (in conjunction with the wall function) for the same flow configuration. The results from all these models are compared with experimental data for flows at different rotation numbers and Reynolds number equal to 25,000. The results show that the low-Reynolds number model predictions are not as good as the high-Re model predictions with the wall function. The wall function formulation predicts the right trend of heat transfer profile and the agreement with the data is within 30% or so for flows at high rotation number. Since the Navier-Stokes equations are integrated all the way to wall in the case of low-Re model, the computation time is relatively high and the convergence is rather slow, thus rendering the low-Re model as an unattractive choice for rotating flows at high Reynolds number.The extended k-ε turbulence model is also employed to compute heat transfer for rotating flows with uneven wall temperatures and uniform wall heat flux conditions. The comparison with the experimental data available in literature shows that the predictions on both the leading wall and the trailing wall are satisfactory and within 5-25% agreement.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Jayakumar Natesan Subramanian ◽  
Farouq S. Mjalli

The heat transfer cooling of a hot liquid in a stirred vessel has been studied experimentally with coolant flowing through a half-coil around the vessel. Correlations have been developed for the heat transfer coefficient of the half coil jacket. A mathematical model for the half coil jacket liquid temperature dynamics and its analytical solution is used to find the shell side temperature profile as a function of time. It is found that the model predictions are in satisfactory agreement with the experimental data and that the developed correlation is superior to previously published correlations for similar systems.


2021 ◽  
Vol 5 (3) ◽  
pp. 42
Author(s):  
Valery A. Danilov ◽  
Christian Hofmann ◽  
Gunther Kolb

The modeling of transfer processes is a step in the generalization and interpretation of experimental data on heat transfer. The developed two-dimensional model is based on a homogeneous mixture model for boiling water flow in a microchannel with a new evaporation submodel. The outcome of the simulation is the distribution of velocity, void fraction and temperature profiles in the microchannel. The predicted temperature profile is consistent with the experimental literature data.


Sign in / Sign up

Export Citation Format

Share Document