The Use of Line and Point Contacts in Determining Lubricant Rheology Under Low Slip Elastohydrodynamic Conditions

1983 ◽  
Vol 105 (2) ◽  
pp. 280-287 ◽  
Author(s):  
D. M. Heyes ◽  
C. J. Montrose

A theoretical study has been made of the elastohydrodynamic small strain behavior of lubricants in line and point contacts. The model for the lubricants is more realistic than those proposed to date and involves a reformulation of the Maxwell model in terms of a Volterra convolution integral equation. In addition to being more physically appealing, the approach can be easily generalized to describe coupled structural and shear relaxation of a nonexponential nature. The calculations predict that certain mineral oils change from exhibiting compressional viscoelastic to elastic behavior at maximum contact pressures and rolling speeds of order 0.5 GPa and 1.0 m/s.

2002 ◽  
Vol 69 (3) ◽  
pp. 309-316 ◽  
Author(s):  
A. Abdul-Latif ◽  
J. P. Dingli ◽  
K. Saanouni

Based on a well-established nonincremental interaction law for fully anisotropic and compressible elastic-inelastic behavior of polycrystals, tangent formulation-based and simplified interaction laws, of softened nature, are derived to describe the nonlinear elastic-inelastic behavior of fcc polycrystals under different loading paths. Within the framework of small strain hypothesis, the elastic behavior, which is defined at granular level, is assumed to be isotropic, uniform, and compressible neglecting the grain rotation. The heterogeneous inelastic deformation is microscopically determined using the slip theory. In addition, the granular elastic behavior and its heterogeneous distribution from grain to grain within a polycrystal are taken into account. Comparisons between these two approaches show that the simplified one is more suitable to describe the overall responses of polycrystals notably under multiaxial loading paths. Nonlinear stress-strain behavior of polycrystals under complex loading, especially a cyclic one, is of particular interest in proposed modeling. The simplified model describes fairly well the yield surface evolution after a certain inelastic prestraining and the principle cyclic features such as Bauschinger effect, additional hardening, etc.


2013 ◽  
Vol 423-426 ◽  
pp. 2035-2039
Author(s):  
Long Cang Huang ◽  
Yin Ping Cao ◽  
Yang Yu ◽  
Yi Hua Dou

In the process of oil and gas well production, tubing connection stand the axial alternating load during open well, shut well and fluid flow. In order to know premium connection seal ability under the loading, two types of P110 88.9mmx6.45mm premium tubing connections which called A connection and B connection are performed with finite element analysis, in which contact pressures and their the regularities distribution on sealing surface are analyzed. The results show that with the increasing of cycle number, the maximum contact pressures on sealing surface of both A connection and B connection are decreased. The decreasing of the maximum contact pressures on B connection is greater than those on A connection. With the increasing of cycle number of axial alternating compression load, the maximum contact pressure on sealing surface of A connection is decreased, and the maximum contact pressure on sealing surface of B connection remains constant. Compared the result, it shows that the seal ability of A connection is better than B connection under axial alternating tension load, while the seal ability of B connection is better than type A connection under axial alternating compression load.


1997 ◽  
Vol 37 (2) ◽  
pp. 127-138 ◽  
Author(s):  
Hervé Di Benedetto ◽  
Fumio Tatsuoka

2012 ◽  
Vol 268-270 ◽  
pp. 737-740
Author(s):  
Yang Yu ◽  
Yi Hua Dou ◽  
Fu Xiang Zhang ◽  
Xiang Tong Yang

It is necessary to know the connecting and sealing ability of premium connection for appropriate choices of different working conditions. By finite element method, the finite element model of premium connection is established and the stresses of seal section, shoulder zone and thread surface of tubing by axial tensile loads are analyzed. The results show that shoulder zone is subject to most axial stresses at made-up state, which will make distribution of stresses on thread reasonable. With the increase of axial tensile loads, stresses of thread on both ends increase and on seal section and shoulder zone slightly change. The maximum stress on some thread exceed the yield limit of material when axial tensile loads exceed 400KN. Limited axial tensile loads sharply influence the contact pressures on shoulder zone while slightly on seal section. Although the maximum contact pressure on shoulder zone drop to 0 when the axial tensile load is 600KN, the maximum contact pressure on seal section will keep on a high level.


Author(s):  
G Marta ◽  
C Quental ◽  
J Folgado ◽  
F Guerra-Pinto

Lateral ankle instability, resulting from the inability of ankle ligaments to heal after injury, is believed to cause a change in the articular contact mechanics that may promote cartilage degeneration. Considering that lateral ligaments’ insufficiency has been related to rotational instability of the talus, and that few studies have addressed the contact mechanics under this condition, the aim of this work was to evaluate if a purely rotational ankle instability could cause non-physiological changes in contact pressures in the ankle joint cartilages using the finite element method. A finite element model of a healthy ankle joint, including bones, cartilages and nine ligaments, was developed. Pure internal talus rotations of 3.67°, 9.6° and 13.43°, measured experimentally for three ligamentous configurations, were applied. The ligamentous configurations consisted in a healthy condition, an injured condition in which the anterior talofibular ligament was cut, and an injured condition in which the anterior talofibular and calcaneofibular ligaments were cut. For all simulations, the contact areas and maximum contact pressures were evaluated for each cartilage. The results showed not only an increase of the maximum contact pressures in the ankle cartilages, but also novel contact regions at the anteromedial and posterolateral sections of the talar cartilage with increasing internal rotation. The anteromedial and posterolateral contact regions observed due to pathological internal rotations of the talus are a computational evidence that supports the link between a pure rotational instability and the pattern of pathological cartilaginous load seen in patients with long-term lateral chronic ankle instability.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Le Fu ◽  
Jie Zhao

Compliance has become one prerequisite of robots designed to work in complex operation environment where dynamic and uncertain physical contact or impact takes place frequently and even intentionally. Impedance control is a typical complaint control methodology. Standard impedance control is based on dynamics described by a spring and damper model connected in parallel way, which endues the robot an elastic behavior. In contrast, plastic deformation can be realized by Maxwell model in which spring and damper connect in series. In this study, a novel Cartesian impedance controller is constructed based on the Maxwell model. Implementation in a robot manipulator is executed to validate and analyze the proposed control law. A plastic deformation behavior of the robot manipulator is produced and certain extent compliance is achieved under the unpredictable impact or contact force exerted by human or other environment objects.


1955 ◽  
Vol 28 (1) ◽  
pp. 24-35 ◽  
Author(s):  
S. M. Gumbrell ◽  
L. Mullins ◽  
R. S. Rivlin

Abstract It is shown that the equilibrium stress-strain behavior of highly swollen rubber vulcanizates in simple extension agrees with the predictions of the kinetic theory. The departures from these predictions which are found in dry or lightly swollen rubbers have been investigated, and it is shown that they can be described in terms of a single parameter C2. The magnitude of this parameter is large in dry rubbers, and decreases to zero at high degrees of swelling ; this decrease occurs linearly with decrease in the volume fraction of rubber. The value of C2 is found to be independent of the nature of the rubber polymer, of the degree of vulcanization, and of the nature of the swelling liquid. The possible significance of this parameter is discussed in light of these observations.


1999 ◽  
Vol 121 (6) ◽  
pp. 616-621 ◽  
Author(s):  
M. T. Fondrk ◽  
E. H. Bahniuk ◽  
D. T. Davy

An experimental study examined the tensile stress-strain behavior of cortical bone during rapid load cycles to high strain amplitudes. Machined bovine and human cortical bone samples were subjected to loading cycles at a nominal load/unload rate of ±420 MPa/s. Loads were reversed at pre-selected strain levels such that load cycles were typically completed in 0.5-0.7 seconds. Axial strain behavior demonstrated considerable nonlinearity in the first load cycle, while transverse strain behavior was essentially linear. For the human bone 29.1 percent (S.D. = 4.7 percent), and for the bovine bone 35.1 percent (S.D. = 10.8 percent) of the maximum nonlinear strain accumulated after load reversal, where nonlinear strain was defined as the difference between total strain and strain corresponding to linear elastic behavior. Average residual axial strain on unloading was 35.4 percent (S.D. = 1.2 percent) for human bone and 35.1 percent (S.D. = 2.9 percent) of maximum nonlinear strain. Corresponding significant volumetric strains and residual volumetric strains were found. The results support the conclusions that the nonlinear stress-strain behavior observed during creep loading also occurs during transient loading at physiological rates. The volume increases suggest that damage accumulation, i.e., new internal surfaces and voids, plays a major role in this behavior. The residual volume increases and associated disruptions in the internal structure of bone provide a potential stimulus for a biological repair response.


Sign in / Sign up

Export Citation Format

Share Document