An Experimental and Numerical Investigation of Near Cooling Hole Heat Fluxes on a Film-Cooled Turbine Blade

1989 ◽  
Vol 111 (1) ◽  
pp. 63-70 ◽  
Author(s):  
C. Camci

Discrete hole film cooling on highly curved surfaces of a gas turbine blade produces very significant wall temperature gradients and wall heat flux variations near downstream and upstream of rows of circular cooling holes. In this study a set of well-defined external heat transfer coefficient distributions in the presence of discrete hole film cooling is presented. Heat transfer coefficients are measured on the suction side of an HP rotor blade profile in a short-duration facility under well-simulated gas turbine flow conditions. The main emphasis of the study is to evaluate the internal heat flux distributions in a detailed way near the cooling holes by using a computational technique. The method uses the measured external heat transfer coefficients as boundary conditions in addition to available internal heat transfer correlations for the internal passages. The study shows the details of the near hole temperature gradients and heat fluxes. The convective heat transfer inside the circular film cooling holes is shown to be very significant even with their relatively small diameter and lengths compared to the chord length. The study also indicates a nonnegligible wall temperature reduction at near upstream of discrete cooling holes. This is explained with the elliptic nature of the internal conduction field of the blade and relatively low coolant temperature levels at the exit of a film cooling hole compared to the mean blade temperature.

Author(s):  
Marko Matkovic ◽  
Stefano Bortolin ◽  
Alberto Cavallini ◽  
Davide Del Col

This work is aimed at presenting experimental heat transfer coefficients measured during condensation inside a single square cross section minichannel, having a 1.18 mm side length. The experimental heat transfer coefficients are compared to the ones previously obtained in a circular minitube. This subject is particularly interesting since most of the mini and microchannels used in practical applications have non circular cross sections. The test section used in the present work is obtained from a thick wall copper tube which is machined to draw a complex passage for the water; its geometry has been studied with the aim of increasing the external heat transfer area and thus decreasing the external heat transfer resistance. This experimental technique allows to measure directly the temperature in the tube wall and in the water channel. The heat flux is determined from the temperature profile of the coolant in the measuring sector. The wall temperature is measured by means of thermocouples embedded in the copper tube, while the saturation temperature is obtained from the saturation pressure measured at the inlet and outlet of the measuring sector. On the whole, more than seventy thermocouples have been placed in the 23 cm long measuring section. Tests have been performed with R134a at 40°C saturation temperature, at mass velocities ranging between 200 and 800 kg m−2s−1. As compared to the heat transfer coefficients measured in a circular minichannel, in the square minichannel the authors find a heat transfer enhancement at the lowest values of mass velocity; this must be due to the effect of the surface tension. No heat transfer coefficient increase has been found at the highest values of the mass velocity where condensation is shear stress dominated.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Phil Ligrani ◽  
Matt Goodro ◽  
Mike Fox ◽  
Hee-Koo Moon

Experimental results are presented for a full-coverage film cooling arrangement which simulates a portion of a gas turbine engine, with appropriate streamwise static pressure gradient. The test surface utilizes varying blowing ratio (BR) along the length of the contraction passage which contains the cooling hole arrangement. For the different experimental conditions examined, film cooling holes are sharp-edged and streamwise inclined either at 20 deg or 30 deg with respect to the liner surface. The film cooling holes in adjacent streamwise rows are staggered with respect to each other. Data are provided for turbulent film cooling, contraction ratios of 1, 3, 4, and 5, blowing ratios (at the test section entrance) of 2.0, 5.0, and 10.0, coolant Reynolds numbers Refc of 10,000–12,000, freestream temperatures from 75 °C to 115 °C, a film hole diameter of 7 mm, and density ratios from 1.15 to 1.25. Nondimensional streamwise and spanwise film cooling hole spacings, X/D and Y/D, are 6, and 5, respectively. When the streamwise hole inclination angle is 20 deg spatially averaged and line-averaged adiabatic effectiveness values at each x/D location are about the same as the contraction ratio varies between 1, 3, and 4, with slightly higher values at each x/D location when the contraction ratio Cr is 5. For each contraction ratio, there is a slight increase in effectiveness when the blowing ratio is increased from 2.0 to 5.0 but there is no further substantial improvement when the blowing ratio is increased to 10.0. Overall, line-averaged and spatially averaged-adiabatic film effectiveness data, and spatially averaged heat transfer coefficient data are described as they are affected by contraction ratio, blowing ratio, hole angle α, and streamwise location x/D. For example, when α = 20 deg, the detrimental effects of mainstream acceleration are apparent since heat transfer coefficients for contraction ratios Cr of 3 and 5 are often higher than values for Cr = 1, especially for x/D > 100.


Author(s):  
Matt Goodro ◽  
Phil Ligrani ◽  
Mike Fox ◽  
Hee-Koo Moon

Experimental results are presented for a full coverage film cooling arrangement which simulates a portion of a gas turbine engine, with appropriate streamwise static pressure gradient. The test surface utilizes varying blowing ratio along the length of the contraction passage which contains the cooling hole arrangement. For the different experimental conditions examined, film cooling holes are sharp-edged and streamwise inclined either at 20° or 30° with respect to the liner surface. The film cooling holes in adjacent streamwise rows are staggered with respect to each other. Data are provided for turbulent film cooling, contraction ratios of 1, 3, 4, and 5, blowing ratios (at the test section entrance) of 2.0, 5.0, and 10.0, coolant Reynolds numbers Refc of 10,000 to 12,000, freestream temperatures from 75°C to 115°C, a film hole diameter of 7 mm, and density ratios from 1.15 to 1.25. Non-dimensional streamwise and spanwise film cooling hole spacings, X/D and Y/D, are 6, and 5, respectively. When the streamwise hole inclination angle is 20°, spatially-averaged and line-averaged adiabatic effectiveness values at each x/D location are about the same as the contraction ratio varies between 1, 3, and 4, with slightly higher values at each x/D location when the contraction ratio Cr is 5. For each contraction ratio, there is a slight increase in effectiveness when the blowing ratio is increased from 2.0 to 5.0 but there is no further substantial improvement when the blowing ratio is increased to 10.0. Overall, line-averaged and spatially-averaged adiabatic film effectiveness data, and spatially-averaged heat transfer coefficient data are described as they are affected by contraction ratio, blowing ratio, hole angle α, and streamwise location x/D. For example, when α = 20°, the detrimental effects of mainstream acceleration are apparent since heat transfer coefficients for contraction ratios Cr of 3 and 5 are often higher than values for Cr = 1, especially for x/D > 100.


Author(s):  
Jason E. Albert ◽  
David G. Bogard ◽  
Frank Cunha

Laboratory studies of film cooling performance for turbine section airfoils typically quantify adiabatic effectiveness and occasionally the heat transfer coefficient for the film cooling configuration. In this study the normalized airfoil metal surface temperatures are obtained directly by using a test model that has a material conductivity scaled to the external and internal heat transfer coefficients so that the Biot number for the model is similar to that for the actual airfoil. These results provide an experimental test case of the conjugate heat transfer involved in turbine airfoil cooling. In this study, conventional adiabatic effectiveness and the overall cooling effectiveness (normalized surface temperature for the matched Biot model) were measured for a generic blade leading edge using three rows of shaped holes. Distinct differences were found between the adiabatic effectiveness and overall cooling effectiveness. Also included is a practical application of this experimental method for which the degradation of overall cooling effectiveness due to a plugged cooling hole is examined.


Author(s):  
A. R. Narcus ◽  
H. R. Przirembel ◽  
F. O. Soechting

The external heat transfer coefficients, necessary for efficient and accurate turbine blade design, have been quantified using three independent methods of data reduction for the high-pressure turbine blades tested in a core engine. Two of the methods utilized external and internal thermocouple data to determine the heat transfer coefficient levels while the third method required the applied heat-flux levels to determine the coefficients. The heat-flux was calculated from the measured potential difference between thermocouple pairs embedded in the external and internal walls of the turbine blades. The instrumented airfoils were calibrated in a laboratory prior to engine testing. The results of the experimental test showed external heat transfer coefficients could be obtained in an engine environment with a ±3.2% minimum absolute uncertainty. All three data reduction methods produced external heat transfer coefficients within a high degree of accuracy and precision for all data locations on the instrumented airfoils. The three data reduction approaches are presented as well as the data for a specific location on a turbine blade for each method of data reduction. In addition, pre-test calibration procedures and data are discussed along with supporting engine instrumentation used to verify the data acquired during the experimental evaluation.


Author(s):  
Carlo Carcasci ◽  
Stefano Zecchi ◽  
Gianpaolo Oteri

CO2 emissions reduction has become an important topic, especially after Kyoto protocol. There are several ways to reduce the overall amount of CO2 discharged into the atmosphere, for example using alternative fluids such as steam or CO2. It is therefore interesting to analyze the consequences of their usage on overall performances of gas turbine and blade cooling systems. The presence of steam can be associated with combined or STIG cycle, whereas pure carbon dioxide or air-carbon dioxide mixtures are present in innovative cycles, where the exhaust gas is recirculated partially or even totally. In this paper we will analyze a commercial gas turbine, comparing different fluids used as working and cooling fluids. The different nature of the fluids involved determines different external heat transfer coefficients (external blade surface), different internal heat transfer coefficients (cooling cavities) and affects film cooling effectiveness, resulting in a change of the blade temperature distribution. Results show that the presence of steam and CO2 could determine a non negligible effect on blade temperature. This means that cooling systems need a deep investigation. A redesign of the cooling system could be required. In particular, results show that steam is well suited for internal cooling, whereas CO2 is better used in film cooling systems.


Author(s):  
Matt Goodro ◽  
Phil Ligrani ◽  
Mike Fox ◽  
Hee-Koo Moon

Experimental results are presented for a full coverage film cooling arrangement which simulates a portion of a gas turbine engine, with appropriate streamwise static pressure gradient and varying blowing ratio along the length of the contraction passage which contains the cooling hole arrangement. Film cooling holes are sharp-edged, streamwise inclined at 20° with respect to the liner surface, and are arranged with a length to diameter ratio of 8.35. The film cooling holes in adjacent streamwise rows are staggered with respect to each other. Data are provided for turbulent film cooling, contraction ratios of 1 and 4, blowing ratios (at the test section entrance) of 2.0, 5.0, and 10.0, coolant Reynolds numbers Refc from 10,000 to 12,000, freestream temperatures from 75°C to 115°C, a film hole diameter of 7 mm, and density ratios from 1.15 to 1.25. Changes to X/D and Y/D, non-dimensional streamwise and spanwise film cooling hole spacings, with Y/D of 3, 5, and 7, and with X/D of 6 and 18, are considered. For all X/D = 6 hole spacings, only a slight increase in effectiveness (local, line-averaged, and spatially-averaged) values are present as the blowing ratio increases from 2.0 to 5.0, with no significant differences when the blowing ratio increases from 5.0 to 10.0. This lack of dependence on blowing ratio indicates a condition where excess coolant is injected into the mainstream flow, a situation not evidenced by data obtained with the X/D = 18 hole spacing arrangement. With this sparse array configuration, local and spatially-averaged effectiveness generally increase continually as the blowing ratio becomes larger. Line-averaged and spatially-averaged heat transfer coefficients are generally higher at each streamwise location, also with larger variations with streamwise development, with the X/D = 6 hole array, compared to the X/D = 18 array.


Author(s):  
Luzeng J. Zhang ◽  
Boris Glezer

Detailed knowledge of local external heat transfer around a turbine airfoil is critical for an accurate prediction of metal temperature and component life. This paper discusses the results of measurements of the local gas side heat transfer coefficient distribution which were performed in an annular gas turbine vane hot-cascade test facility and provides comparisons with analytical predictions. The steady state tests were performed at simulated engine operating conditions. The tests were conducted on an internally cooled airfoil with the intent to provide close to uniform coolant temperature at the mid-span of the airfoil and also to obtain a high heat flux through the wall, minimizing uncertainty. Internal coolant side heal transfer coefficients were measured through calibration tests outside the cascade by a wire heater. A calibrated infrared pyrometer was used to provide detailed airfoil surface local temperatures and the corresponding external heat transfer coefficients. The airfoil was instrumented with a number of thermocouples for both calibration and temperature measurement. A 12% freestream turbulence was generated by a turbulence grid upstream of the test cascade. The static pressure measured over the test vane agreed well with invicid predictions. Heat transfer coefficients were measured and compared to a TEXSTAN boundary layer code prediction. The influence of Reynolds number and Mach number on the airfoil external heat transfer coefficient were also studied and is presented in the paper.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Phil Ligrani ◽  
Matt Goodro ◽  
Mike Fox ◽  
Hee-Koo Moon

Experimental results are presented for a full coverage film cooling arrangement which simulates a portion of a gas turbine engine, with appropriate streamwise static pressure gradient and varying blowing ratio along the length of the contraction passage which contains the cooling hole arrangement. Film cooling holes are sharp-edged, streamwise inclined at 20 deg with respect to the liner surface, and are arranged with a length to diameter ratio of 8.35. The film cooling holes in adjacent streamwise rows are staggered with respect to each other. Data are provided for turbulent film cooling, contraction ratios of 1 and 4, blowing ratios (at the test section entrance) of 2.0, 5.0, and 10.0, coolant Reynolds numbers Refc from 10,000 to 12,000 (for a blowing ratio of 5.0), freestream temperatures from 75 °C to 115 °C, a film hole diameter of 7 mm, and density ratios from 1.15 to 1.25. Changes to X/D and Y/D, nondimensional streamwise and spanwise film cooling hole spacings, with Y/D of 3, 5, and 7, and with X/D of 6 and 18, are considered. For all X/D=6 hole spacings, only a slight increase in effectiveness (local, line-averaged, and spatially-averaged) values are present as the blowing ratio increases from 2.0 to 5.0, with no significant differences when the blowing ratio increases from 5.0 to 10.0. This lack of dependence on blowing ratio indicates a condition where excess coolant is injected into the mainstream flow, a situation not evidenced by data obtained with the X/D=18 hole spacing arrangement. With this sparse array configuration, local and spatially-averaged effectiveness generally increase continually as the blowing ratio becomes larger. Line-averaged and spatially-averaged heat transfer coefficients are generally higher at each streamwise location, also with larger variations with streamwise development, with the X/D=6 hole array, compared to the X/D=18 array.


Sign in / Sign up

Export Citation Format

Share Document