Pressure Loss Distribution in Three-Pass Rectangular Channels With Rib Turbulators

1989 ◽  
Vol 111 (4) ◽  
pp. 515-521 ◽  
Author(s):  
J. C. Han ◽  
P. Zhang

The present study investigated the combined effects of the flow channel aspect ratio, the rib turbulator configuration, and the sharp 180-deg turn on the distributions of the local pressure drop in three-pass rectangular channels for a Reynolds number range of 15,000 to 60,000. The channel aspect ratios (the channel width-to-height ratios W/H; ribs on the channel width, W, side) were 1, 1/2, and 1/4. The rib height-to-hydraulic diameter ratios (E/D) were 0.063, 0.047, and 0.039; the rib pitch-to-height ratios (P/E) were 5, 7.5, 10, and 15; the rib angles of attack (α) were 90, 60, and 45 deg. The results showed that the rib turbulators dominated the pressure drops in the first pass of the three-pass channel. The pressure drops in the two-pass and the three-pass channels were caused by both the rib turbulators and the sharp 180-deg turns. The differences of the pressure drops caused by the different rib configurations (rib angle, spacing, and height) were significant in the first pass. The differences, however, were diluted by the sharp 180-deg turns in the two-pass and the three-pass channels, and by the smaller channel aspect ratio (W/H changed from 1 to 1/4). The friction factor correlations for the first pass, the first two-pass, and the three-pass were obtained to account for the rib configuration, the channel aspect ratio, and the Reynolds number. The correlations can be used in the design of the turbine airfoil cooling passages.

1988 ◽  
Vol 110 (2) ◽  
pp. 321-328 ◽  
Author(s):  
J. C. Han

The effect of the channel aspect ratio on the distribution of the local heat transfer coefficient in rectangular channels with two opposite ribbed walls (to simulate turbine airfoil cooling passages) was determined for a Reynolds number range of 10,000 to 60,000. The channel width-to-height ratios (W/H, ribs on side W) were 1/4, 1/2, 1, 2, and 4. The test channels were heated by passing current through thin, stainless steel foils instrumented with thermocouples. The local heat transfer coefficients on the ribbed side wall and on the smooth side wall of each test channel from the channel entrance to the fully developed regions were measured for two rib spacings (P/e = 10 and 20). The rib angle-of-attack was kept at 90 deg. The local data in the fully developed region were averaged and correlated, based on the heat transfer and friction similarity laws developed for ribbed channels, to cover the ranges of channel aspect ratio, rib spacing, rib height, and Reynolds number. The results compare well with the published data for flow in a square channel with two opposite ribbed walls. The correlations can be used in the design of turbine airfoil cooling passages.


2003 ◽  
Vol 125 (2) ◽  
pp. 232-242 ◽  
Author(s):  
Luai AL-Hadhrami ◽  
Todd Griffith ◽  
Je-Chin Han

An experimental study was made to obtain heat transfer data for a two-pass rectangular channel (aspect ratio=2:1) with smooth and ribbed surfaces for two channel orientations (90 deg and 135 deg with respect to the plane of rotation). The V-shaped ribs are placed on the leading and trailing surfaces. Five different arrangements of 45 deg V-shaped ribs are studied. The Reynolds number and rotation number ranges are 5000–40000, and 0.0–0.21, respectively. The rib height to hydraulic diameter ratio (e/D) is 0.094; the rib pitch-to-height ratio (P/e) is 10; and the inlet coolant-to-wall density ratio (Δρ/ρ) is maintained around 0.115 for every test. The results show that the rotation-induced secondary flow enhances the heat transfer of the first pass trailing surface and second pass leading surface. However, the first pass leading and the second pass trailing surfaces show a decrease in heat transfer with rotation. The results also show that parallel 45 deg V-shaped rib arrangements produce better heat transfer augmentation than inverted 45 deg V-shaped ribs and crossed 45 deg V-shaped ribs, and a 90 deg channel orientation produces greater rotating effect on heat transfer than a 135 deg orientation.


2002 ◽  
Vol 124 (2) ◽  
pp. 242-250 ◽  
Author(s):  
Mohammad Al-Qahtani ◽  
Yong-Jun Jang ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Numerical predictions of three-dimensional flow and heat transfer are presented for a rotating two-pass rectangular channel with 45-deg rib turbulators and channel aspect ratio of 2:1. The rib height-to-hydraulic diameter ratio e/Dh is 0.094 and the rib-pitch-to-height ratio P/e is 10. Two channel orientations are studied: β=90deg and 135 deg, corresponding to the mid-portion and the trailing edge regions of a turbine blade, respectively. The focus of this study is twofold; namely, to investigate the effect of the channel aspect ratio and the channel orientation on the nature of the flow and heat transfer enhancement. A multi-block Reynolds-averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure. In the present method, the convective transport equations for momentum, energy, and turbulence quantities are solved in curvilinear, body-fitted coordinates using the finite-analytic method. The numerical results compare reasonably well with experimental data for both stationary and rotating rectangular channels with rib turbulators at Reynolds number (Re) of 10,000, rotation number (Ro) of 0.11 and inlet coolant-to-wall density ratio (Δρ/ρ) of 0.115.


Author(s):  
Mohammad Al-Qahtani ◽  
Yong-Jun Jang ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Numerical predictions of three-dimensional flow and heat transfer are presented for a rotating two-pass rectangular channel with 45° rib turbulators and channel aspect ratio of 2:1. The rib height-to-hydraulic diameter ratio (e/Dh) is 0.094 and the rib-pitch-to-height ratio (P/e) is 10. Two channel orientations are studied: β = 90° and β = 135° corresponding to the mid-portion and the trailing edge regions of a turbine blade, respectively. The focus of this study is twofold; namely, to investigate the effect of the channel aspect ratio and the channel orientation on the nature of the flow and heat transfer enhancement. A multi-block Reynolds-Averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure. In the present method, the convective transport equations for momentum, energy, and turbulence quantities are solved in curvilinear, body-fitted coordinates using the finite-analytic method. The numerical results compare reasonably well with experimental data for both stationary and rotating rectangular channels with rib turbulators at Reynolds number (Re) of 10,000, rotation number (Ro) of 0.11 and inlet coolant-to-wall density ratio (Δρ/ρ) of 0.115.


Author(s):  
Matthew A. Smith ◽  
Randall M. Mathison ◽  
Michael G. Dunn

Heat transfer distributions are presented for a stationary three passage serpentine internal cooling channel for a range of engine representative Reynolds numbers. The spacing between the sidewalls of the serpentine passage is fixed and the aspect ratio (AR) is adjusted to 1:1, 1:2, and 1:6 by changing the distance between the top and bottom walls. Data are presented for aspect ratios of 1:1 and 1:6 for smooth passage walls and for aspect ratios of 1:1, 1:2, and 1:6 for passages with two surfaces turbulated. For the turbulated cases, turbulators skewed 45° to the flow are installed on the top and bottom walls. The square turbulators are arranged in an offset parallel configuration with a fixed rib pitch-to-height ratio (P/e) of 10 and a rib height-to-hydraulic diameter ratio (e/Dh) range of 0.100 to 0.058 for AR 1:1 to 1:6, respectively. The experiments span a Reynolds number range of 4,000 to 130,000 based on the passage hydraulic diameter. While this experiment utilizes a basic layout similar to previous research, it is the first to run an aspect ratio as large as 1:6, and it also pushes the Reynolds number to higher values than were previously available for the 1:2 aspect ratio. The results demonstrate that while the normalized Nusselt number for the AR 1:2 configuration changes linearly with Reynolds number up to 130,000, there is a significant change in flow behavior between Re = 25,000 and Re = 50,000 for the aspect ratio 1:6 case. This suggests that while it may be possible to interpolate between points for different flow conditions, each geometric configuration must be investigated independently. The results show the highest heat transfer and the greatest heat transfer enhancement are obtained with the AR 1:6 configuration due to greater secondary flow development for both the smooth and turbulated cases. This enhancement was particularly notable for the AR 1:6 case for Reynolds numbers at or above 50,000.


Author(s):  
I-Lun Chen ◽  
Izzet Sahin ◽  
Lesley M. Wright ◽  
Je-Chin Han ◽  
Robert Krewinkel

Abstract The thermal performance of two V-type rib configurations is measured in a rotating, two-pass cooling channel. Modeling modern, high pressure, turbine blades, the cross-section of the cooling channel varies from the first pass to the second pass. The coolant travels radially outward in the rectangular first pass with an aspect ratio of 4:1. Near the tip region, the coolant turns 180°, and travels radially inward in a 2:1 rectangular channel. The serpentine passage is positioned such that both the first and second passes are oriented 90° to the direction of rotation. The leading and trailing surfaces of both the first and second pass of the channel are roughened with V-type rib turbulators. The thermal performance of two V-type configurations is measured in this two-pass channel. The first V-shaped configuration is similar to a traditional V-shaped turbulator with a narrow gap at the apex of the V. The configuration is modified by off-setting one leg of the V to create a staggered discrete, V-shaped configuration. The ribs are oriented 45° relative to the streamwise coolant direction. In both passes, the rib spacing is P/e = 10 and the rib height – to – channel height is e/H = 0.16. The heat transfer enhancement and frictional losses are measured for both rib configurations with varying Reynolds and rotation numbers. The Reynolds number varies from 10,000 to 45,000 in the AR = 4:1 first pass; this corresponds to 16,000 to 73,500 in the AR = 2:1 second pass. Considering the effect of rotation, the rotational speed of the channel varies from 0–400 rpm with maximum rotation numbers of 0.39 and 0.16 in the first and second passes, respectively. The heat transfer enhancement on both the leading and trailing surfaces of the first pass of the 45° V-shaped channel is slightly reduced with rotation. In the second pass, the heat transfer increases on the leading surface while it decreases on the trailing surface. The 45° staggered, discrete V-shaped ribs provide increased heat transfer and thermal performance compared to the traditional V-shaped and standard, 45° angled rib turbulators.


Author(s):  
Michael Huh ◽  
Yao-Hsien Liu ◽  
Je-Chin Han ◽  
Sanjay Chopra

The focus of the current study was to determine the effects of rib spacing on heat transfer in rotating 1:4 AR channels. In the current study, heat transfer experiments were performed in a two-pass, 1:4 aspect ratio channel, with a sharp bend entrance. The channel leading and trailing walls in the first pass and second pass utilized angled rib turbulators (45° to the mainstream flow). The rib height-to-hydraulic diameter ratio (e/Dh) was held constant at 0.078. The channel was oriented 90° to the direction of rotation. Three rib pitch-to-rib height ratios (P/e) were studied: P/e = 2.5, 5, and 10. Each ratio was tested at five Reynolds numbers: 10K, 15K, 20K, 30K and 40K. For each Reynolds number, experiments were conducted at five rotational speeds: 0, 100, 200, 300, and 400 rpm. Results showed that the sharp bend entrance has a significant effect on the first pass heat transfer enhancement. In the second pass, the rib spacing and rotation effect are reduced. The P/e = 10 case had the highest heat transfer enhancement based on total area, whereas the P/e = 2.5 had the highest heat transfer enhancement based on the projected area. The current study has extended the range of the rotation number (Ro) and local buoyancy parameter (Box) for a ribbed 1:4 aspect ratio channel up to 0.65 and 1.5, respectively. Correlations for predicting heat transfer enhancement, due to rotation, in the ribbed (P/e = 2.5, 5, and 10) 1:4 aspect ratio channel, based on the extended range of the rotation number and buoyancy parameter, are presented in the paper.


Micromachines ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 455 ◽  
Author(s):  
Wasim Raza ◽  
Shakhawat Hossain ◽  
Kwang-Yong Kim

A wide range of existing passive micromixers are reviewed, and quantitative analyses of ten typical passive micromixers were performed to compare their mixing indices, pressure drops, and mixing costs under the same axial length and flow conditions across a wide Reynolds number range of 0.01–120. The tested micromixers were selected from five types of micromixer designs. The analyses of flow and mixing were performed using continuity, Navier-Stokes and convection-diffusion equations. The results of the comparative analysis were presented for three different Reynolds number ranges: low-Re (Re ≤ 1), intermediate-Re (1 < Re ≤ 40), and high-Re (Re > 40) ranges, where the mixing mechanisms are different. The results show a two-dimensional micromixer of Tesla structure is recommended in the intermediate- and high-Re ranges, while two three-dimensional micromixers with two layers are recommended in the low-Re range due to their excellent mixing performance.


2008 ◽  
Vol 130 (9) ◽  
Author(s):  
Ghislain Michaux ◽  
Olivier Vauquelin ◽  
Elsa Gauger

An experimental procedure was developed for determining both the density and flow rate of a gas from measurements of pressure drops caused by an abrupt flow area contraction in a cylindrical pipe. Experiments were carried out by varying the density and flow rate of a light gas mixture of air and helium, spanning a Reynolds number range from 0.2×104 to 3.4×104. From experimental results, a procedure was then proposed for evaluating the density from pressure change measurements in the scope of light gas extraction experiments.


2018 ◽  
Vol 837 ◽  
pp. 896-915 ◽  
Author(s):  
Jessica K. Shang ◽  
H. A. Stone ◽  
A. J. Smits

Wake visualization experiments were conducted on a finite curved cylinder whose plane of curvature is aligned with the free stream. The stagnation face of the cylinder is oriented concave or convex to the flow at $230\leqslant Re_{D}\leqslant 916$, where $Re_{D}$ is the cylinder Reynolds number and the curvature is constant and ranges from a straight cylinder to a quarter-ring. While the magnitude of the local angle of incidence to the flow is the same for both orientations, the contrast in their wakes demonstrates a violation of a common approximation known as the ‘independence principle’ for curved cylinders. Vortex shedding always occurred for the convex-oriented cylinder for the Reynolds-number range investigated, along most of the cylinder span, at a constant vortex shedding angle. In contrast, a concave-oriented cylinder could exhibit multiple concurrent wake regimes along its span: two shedding regimes (oblique, normal) and two non-shedding regimes. The occurrence of these wake regimes depended on the curvature, aspect ratio and Reynolds number. In some cases, vortex shedding was entirely suppressed, particularly at higher curvatures. In the laminar wake regime, increasing the curvature or decreasing the aspect ratio restricts vortex shedding to smaller regions along the span of the cylinder. Furthermore, the local angle of incidence where vortex shedding occurs is self-similar across cylinders of the same aspect ratio and varying curvature. After the wake transitions to turbulence, the vortex shedding extends along most of the cylinder span. The difference in the wakes between the concave and convex orientations is attributed to the spanwise flow induced by the finite end conditions, which reduces the generation of spanwise vorticity and increases the incidence of non-shedding and obliquely shedding wakes for the concave cylinder.


Sign in / Sign up

Export Citation Format

Share Document