Appraisal of Allowable Loads by Simplified Rules

1986 ◽  
Vol 108 (2) ◽  
pp. 131-137
Author(s):  
D. Moulin

This paper presents a simplified method to analyze the buckling of thin structures like those of Liquid Metal Fast Breeder Reactors (LMFBR). The method is very similar to those used for the buckling of beams and columns with initial geometric imperfections, buckling in the plastic region. Special attention is paid to the strain hardening of material involved and to possible unstable post-buckling behavior. The analytical method uses elastic calculations and diagrams that account for various initial geometric defects. An application of the method is given. A comparison is made with an experimental investigation concerning a representative LMFBR component.

Author(s):  
Ali Fatemi ◽  
Shawn Kenny ◽  
Millan Sen ◽  
Joe Zhou ◽  
Farid Taheri ◽  
...  

A numerical modeling procedure was developed, using the finite-element simulator ABAQUS/Standard, to predict the local buckling and post-buckling response of high strength pipelines subject to combined state of loading. The numerical procedures were calibrated using test data from large-scale experiments examining the local buckling of high strength linepipe. The numerical model’s response was consistent with the measured experimental response for predicting the local buckling behavior well into the post-yield range. A parametric study was conducted that examined element selection, mesh topology, second-order effects, geometric imperfections and material properties. The results from this study are presented.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Muntaseer Kainat ◽  
Meng Lin ◽  
J. J. Roger Cheng ◽  
Michael Martens ◽  
Samer Adeeb

The effects of the initial geometric imperfections on the buckling response of grade X-100 UOE manufactured pipes are studied through finite element analysis (FEA). The initial geometric imperfections had been previously measured and quantified in terms of deviations in outside radius (OR) and wall thickness. The measurement results are used to develop imperfection models to be incorporated into buckling analysis. The OR deviation is seen to have insignificant effects on the buckling behavior, while the effects of thickness deviation are seen to be profound for both unpressurized and pressurized pipes. The geometric imperfection models are further investigated through a sensitivity study to isolate the most influential imperfection aspects on the buckling resistance of UOE pipes. A parametric study is carried out using these models and shows that excluding geometric imperfections will always result in overprediction of buckling capacity irrespective of D/t ratios.


1985 ◽  
Author(s):  
R. PURASINGHE ◽  
W. MUELLER ◽  
H. ERZURUMLU ◽  
A. WAGNER

Sign in / Sign up

Export Citation Format

Share Document