Creep Buckling Analyses of Circular Cylindrical Shells Under Axial Compression—Bifurcation Buckling Analysis by the Finite Element Method

1987 ◽  
Vol 109 (2) ◽  
pp. 179-183 ◽  
Author(s):  
N. Miyazaki

The finite element method is applied to the creep buckling of circular cylindrical shells under axial compression. Not only the axisymmetric mode but also the bifurcation mode of the creep buckling are considered in the analysis. The critical time for creep buckling is defined as either the time when a slope of a displacement versus time curve becomes infinite or the time when the bifurcation buckling occurs. The creep buckling analyses are carried out for an infinitely long and axially compressed circular cylindrical shell with an axisymmetric initial imperfection and for a finitely long and axially compressed circular cylindrical shell. The numerical results are compared with available analytical ones and experimental data.

1993 ◽  
Vol 115 (3) ◽  
pp. 268-274 ◽  
Author(s):  
N. Miyazaki ◽  
S. Hagihara

In the present work, analytical and experimental investigations were performed on creep buckling. Special attention was focussed on bifurcation behavior during creep deformation. The finite element method was used to analyze creep buckling of circular cylindrical shells without initial imperfection. The number of circumferential waves obtained from the analyses agrees well with those of the experiments. The present experimental investigation shows that the circumferential waves are suddenly caused near a bulge. It is also found that there is no correlation between the wavelength of the circumferential waves observed at creep buckling and that of the circumferential initial imperfection. Deformation patterns at the bifurcation creep buckling obtained from the analyses are analogous to those of the experiments. It is concluded from the analyses and the experiments that the circumferential waves observed in creep buckling experiments are due to bifurcation buckling during creep deformation.


Author(s):  
M. ANANDARAO ◽  
V. RAMAMURTI ◽  
R.V. DUKKIPATI

Static analysis of circular cylindrical shell with ribs and flange assembly subjected to axisymmetric and asymmetric loading is carried out. Finite element method using cyclic symmetric is used. The Potter’s method is modified to solve the simultaneous equation of cyclic symmetry analysis. An experimental model was tested for static axisymmetric and asymmetric loading. The results are compared with the theoretical ones.


1982 ◽  
Vol 17 (1) ◽  
pp. 9-12 ◽  
Author(s):  
J W Bull

An experimental and finite element analysis of a uniform cylindrical shell with a large circular cut-out is presented. In this analysis three hole sizes are considered, namely μ = 2.037, 4.084, and 6.344 (where μ = {[12(1 - y2)]1/4/2} × [ a/( Rt)1/2]), for loadings of axial compression, torsion and three point bending. The experimental results are the only ones available for cylindrical shells with large values of μ (except for one graph by Savin (1)†), while for three point bending there is no previously published theoretical or analytical results. Good agreement is found between the calculated and experimental stresses around the holes.


1999 ◽  
Vol 21 (2) ◽  
pp. 116-128
Author(s):  
Pham Thi Toan

In the present paper, the goffered multilayered composite cylindrical shells is directly calculated by finite element method. Numerical results on displacements, internal forces and moments are obtained for various kinds of external loads and different boundary conditions.


Author(s):  
U. Yuceoglu ◽  
V. O¨zerciyes

This study is concerned with the “Free Asymmetric Vibrations of Composite Full Circular Cylindrical Shells Stiffened by a Bonded Central Shell Segment.” The base shell is made of an orthotropic “full” circular cylindrical shell reinforced and/or stiffened by an adhesively bonded dissimilar, orthotropic “full” circular cylindrical shell segment. The stiffening shell segment is located at the mid-center of the composite system. The theoretical analysis is based on the “Timoshenko-Mindlin-(and Reissner) Shell Theory” which is a “First Order Shear Deformation Shell Theory (FSDST).” Thus, in both “base (or lower) shell” and in the “upper shell” segment, the transverse shear deformations and the extensional, translational and the rotary moments of inertia are taken into account in the formulation. In the very thin and linearly elastic adhesive layer, the transverse normal and shear stresses are accounted for. The sets of the dynamic equations, stress-resultant-displacement equations for both shells and the in-between adhesive layer are combined and manipulated and are finally reduced into a ”Governing System of the First Order Ordinary Differential Equations” in the “state-vector” form. This system is integrated by the “Modified Transfer Matrix Method (with Chebyshev Polynomials).” Some asymmetric mode shapes and the corresponding natural frequencies showing the effect of the “hard” and the “soft” adhesive cases are presented. Also, the parametric study of the “overlap length” (or the bonded joint length) on the natural frequencies in several modes is considered and plotted.


Author(s):  
Farhad Sabri ◽  
Aouni A. Lakis

In this work, a hybrid finite element formulation is presented to predict the flutter boundaries of circular cylindrical shells made of functionally graded materials. The development is based on the combination of linear Sanders thin shell theory and classic finite element method. Material properties are temperature dependent, and graded in the shell thickness direction according to a simple power law distribution in terms of volume fractions of constituents. The temperature field is assumed to be uniform over the shell surface and along the shell thickness. First order piston theory is applied to account for supersonic aerodynamic pressure. The effects of temperature rise and shell internal pressure on the flutter boundaries of FG circular cylindrical shell for different values of power law index are investigated. The present study shows efficient and reliable results that can be applied to the aeroelastic design and analysis of shells of revolution in aerospace vehicles.


Sign in / Sign up

Export Citation Format

Share Document